zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model. (English) Zbl 1183.68608

Summary: A relative reduct can be considered as a minimum set of attributes that preserves a certain classification property. This paper investigates three different classification properties, and suggests three distinct definitions accordingly. In the Pawlak rough set model, while the three definitions yield the same set of relative reducts in consistent decision tables, they may result in different sets in inconsistent tables.

Relative reduct construction can be carried out based on a discernibility matrix. The study explicitly stresses a fact, that the definition of a discernibility matrix should be tied to a certain property. Regarding the three classification properties, we can define three distinct definitions accordingly.

Based on the common structure of the specific definitions of relative reducts and discernibility matrices, general definitions of relative reducts and discernibility matrices are suggested.

68T30Knowledge representation
[1]Beaubouef, T.; Petry, F. E.; Arora, G.: Information-theoretic measures of uncertainty for rough sets and rough relational databases, Information sciences 109, 185-195 (1998)
[2]Düntsch, I.; Gediga, G.: Uncertainty measures of rough set prediction, Artificial intelligence 106, 77-107 (1998) · Zbl 0909.68040 · doi:10.1016/S0004-3702(98)00091-5
[3]Hu, Q. H.; Xie, Z. X.; Yu, D. R.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation, Pattern recognition letters 40, 3509-3521 (2007) · Zbl 1129.68073 · doi:10.1016/j.patcog.2007.03.017
[4]Hu, Q. H.; Yu, D. R.; Xie, Z. X.: Information-preserving hybrid data reduction based on fuzzy-rough techniques, Pattern recognition letters 27, 414-423 (2006)
[5]Hu, X. H.; Cercone, N.: Learning in relational databases: a rough set approach, Computational intelligence 11, 323-338 (1995)
[6]Klir, J.; Wierman, M. J.: Uncertainty based information: elements of generalized information theory, (1999)
[7]Kryszkiewicz, M.: Comparative study of alternative types of knowledge reduction in inconsistent systems, International journal of intelligent systems 16, 105-120 (2001) · Zbl 0969.68146 · doi:10.1002/1098-111X(200101)16:1<105::AID-INT8>3.0.CO;2-S
[8]Liang, J. Y.; Shi, Z. Z.: The information entropy, rough entropy and knowledge granulation in rough set theory, International journal of uncertainty, fuzziness and knowledge-based systems 12, 37-46 (2004) · Zbl 1074.68072 · doi:10.1142/S0218488504002631
[9]Mi, J. S.; Wu, W. Z.; Zhang, W. X.: Approaches to knowledge reduction based on variable precision rough set model, Information sciences 159, 255-272 (2004) · Zbl 1076.68089 · doi:10.1016/j.ins.2003.07.004
[10]D.Q. Miao, J. Zhou, N. Zhang, N. Feng, R.Z. Wang, Research of attribute reduction based on algebraic equations, Acta Electronica Sinica, accepted for publication. (in Chinese)
[11]Nguyen, S. H.; Nguyen, H. S.: Some efficient algorithms for rough set methods, Proceedings of the international conference on information processing and management of uncertainty on knowledge based systems, 1451-1456 (1996)
[12]Pawlak, Z.: Rough sets, International journal of computer and information sciences 11, 341-356 (1982)
[13]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[14]Skowron, A.: Boolean reasoning for decision rules generation, Proceedings of the international symposium on methodologies for intelligent systems, 295-305 (1993)
[15]Skowron, A.; Rauszer, C.: The discernibility matrices and functions in information systems, Intelligent decision support, handbook of applications and advances of the rough sets theory (1992)
[16]Slezak, D.: Approximate reducts in decision tables, Proceedings of information processing and management of uncertainty, 1159-1164 (1996)
[17]Slezak, D.: Normalized decision functions and measures for inconsistent decision tables analysis, Fundamenta informaticae 44, 291-319 (2000) · Zbl 0970.68171
[18]Susmaga, R.: Reducts and constructs in attribute reduction, Fundamenta informaticae 61, No. 2, 159-181 (2004) · Zbl 1083.68123 · doi:http://iospress.metapress.com/openurl.asp?genre=article&issn=0169-2968&volume=61&issue=2&spage=159
[19]Wang, G. Y.: Calculation methods for core attributes of decision table, Chinese journal of computers 26, 611-615 (2003)
[20]Wang, G. Y.; Zhao, J.; Wu, J.: A comparitive study of algebra viewpoint and information viewpoint in attribute reduction, Foundamenta informaticae 68, 1-13 (2005) · Zbl 1098.68134
[21]Wang, J.; Miao, D. Q.: Analysis on attribute reduction strategies of rough set, Chinese journal of computer science and technology 13, 189-192 (1998) · Zbl 0902.68049 · doi:10.1007/BF02946606
[22]Wang, J.; Wang, J.: Reduction algorithms based on discernibility matrix: the ordered attributes method, Journal of computer science and technology 16, 489-504 (2001) · Zbl 1014.68160 · doi:10.1007/BF02943234
[23]Wierman, M. J.: Measuring uncertainty in rough set theory, International journal of general systems 28, 283-297 (1999) · Zbl 0938.93034 · doi:10.1080/03081079908935239
[24]Wu, W. Z.; Zhang, M.; Li, H. Z.; Mi, J. S.: Knowledge reduction in random information systems via Dempster – Shafer theory of evidence, Information sciences 174, 143-164 (2005) · Zbl 1088.68169 · doi:10.1016/j.ins.2004.09.002
[25]Yang, M.; Sun, Z. H.: Improvement of discernibility matrix and the computation of a core, Journal of fudan university (Natural science) 43, 865-868 (2004)
[26]Yao, Y. Y.: Decision-theoretic rough set models, Proceedings of the second international conference on rough sets and knowledge technology 4481, 1-12 (2007)
[27]Yao, Y. Y.; Zhao, Y.: Attribute reduction in decision-theoretic rough set models, Information sciences 178, 3356-3373 (2008) · Zbl 1156.68589 · doi:10.1016/j.ins.2008.05.010
[28]Yao, Y. Y.; Zhao, Y.: Discernibility matrix simplification for constructing attribute reducts, Information sciences 179, No. 7, 867-882 (2009) · Zbl 1162.68704 · doi:10.1016/j.ins.2008.11.020
[29]Ye, D. Y.; Chen, Z. J.: An improved discernibility matrix for computing all reducts of an inconsistent decision table, The Proceedings of the fifth IEEE international conference on cognitive informatics, 305-308 (2006)
[30]Zhang, W. X.; Mi, J. S.; Wu, W. Z.: Knowledge reduction in inconsistent information systems, Chinese journal of computers 1, 12-18 (2003)
[31]Zhao, K.; Wang, J.: A reduction algorithm meeting users’ requirements, Journal of computer science and technology 17, 578-593 (2002) · Zbl 1057.68026 · doi:10.1007/BF02948826
[32]Zhao, Y.; Luo, F.; Wong, S. K. M.; Yao, Y. Y.: A general definition of an attribute reduct, Proceedings of the second rough sets and knowledge technology, 101-108 (2007)
[33]Zhao, Y.; Yao, Y. Y.; Luo, F.: Data analysis based on discernibility and indiscernibility, Information sciences 177, 4959-4976 (2007) · Zbl 1129.68071 · doi:10.1016/j.ins.2007.06.031