zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projective synchronization of hyperchaotic Lü system and Liu system. (English) Zbl 1183.70055
Summary: This work is concerned with projective synchronization of hyperchaotic Lü system and Liu system by add-order method. Different controllers are designed to projective-synchronize the two nonidentical chaotic systems, active control is used when parameters are known, while the adaptive control law and the parameter update rule are derived via adaptive control when parameters are uncertain. Moreover, the convergence rates of the scheme can be adjusted by changing the control coefficients. Finally, numerical simulations are also shown to verify the results.
MSC:
70K55Transition to stochasticity (chaotic behavior)
References:
[1]Perora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[3]Luo, A.C.J.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14, 1901–1951 (2009) · Zbl 1221.37218 · doi:10.1016/j.cnsns.2008.07.002
[4]Yang, S.S., Juan, C.K.: Generalized synchronization in chaotic systems. Chaos Solitons Fractals 9, 1703–1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[5]Yan, Z.Y.: Q–S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller. Phys. Lett. A 342, 309–317 (2005) · Zbl 1222.37093 · doi:10.1016/j.physleta.2005.04.049
[6]Park, E.H., Zaks, M.A., Kurths, J.: Phase synchronization in the forced Lorenz system. Phys. Rev. E 60, 6627–6638 (1999) · Zbl 1062.37502 · doi:10.1103/PhysRevE.60.6627
[7]Al-Sawalha, M.M., M-Noorani, M.S.: Chaos anti-synchronization between two novel different hyperchaotic systems. Chin. Phys. Lett. 25(8), 2743–2746 (2008) · doi:10.1088/0256-307X/25/8/003
[8]Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042–3045 (1999) · doi:10.1103/PhysRevLett.82.3042
[9]Xu, D.: Control of projective synchronization in chaotic systems. Phys. Rev. E 63(2), 027201 (2001) · doi:10.1103/PhysRevE.63.027201
[10]Chee, C.Y., Xu, D.: Secure digital communication using controlled projective synchronisation of chaos. Chaos Solitons Fractals 23(3), 1063–1070 (2005)
[11]Xu, D., Chee, C.Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. Rev. E 66(4), 046218 (2002) · doi:10.1103/PhysRevE.66.046218
[12]Wen, G.L., Xu, D.: Observer-based control for full-state projective synchronization of a general class of chaotic maps in any dimension. Phys. Lett. A 333, 420–425 (2004) · Zbl 1123.37326 · doi:10.1016/j.physleta.2004.10.072
[13]Chee, C.Y., Xu, D.: Secure digital communication using controlled projective synchronization of chaos. Chaos Solitons Fractals 23(3), 1063–1070 (2005)
[14]Xu, D., Li, Z.: Controlled projective synchronization in nonparametrically-linear chaotic systems. Int. J. Bifurc. Chaos 12(6), 1395–1402 (2002) · doi:10.1142/S0218127402005170
[15]Li, Z., Xu, D.: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22(2), 477–481 (2004) · Zbl 1060.93530 · doi:10.1016/j.chaos.2004.02.019
[16]Feng, C.F., Zhang, Y., Sun, J.T., Qi, W., Wang, Y.H.: Generalized projective synchronization in time-delayed chaotic systems. Chaos Solitons Fractals 38, 743–747 (2008) · Zbl 1146.37318 · doi:10.1016/j.chaos.2007.01.037
[17]Chen, A.M., Lu, J.A., Lü, J.H., Yu, S.M.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006) · doi:10.1016/j.physa.2005.09.039
[18]Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004) · Zbl 1060.37027 · doi:10.1016/j.chaos.2004.02.060