×

A new Numerov-type method for the numerical solution of the Schrödinger equation. (English) Zbl 1183.81060

Summary: In the present paper we develop a new methodology for the development of efficient numerical methods for the approximate solution of the one-dimensional Schrödinger equation. The new methodology is based on the requirement that the phase-lag and its derivatives to be vanished. The efficiency of the new methodology is proved via error analysis and numerical results.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
65G20 Algorithms with automatic result verification

Software:

SCHOL; DAETS; pythNon; Maple; VFGEN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007) · Zbl 1125.81017 · doi:10.1007/s10910-006-9071-3
[2] Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005) · Zbl 1070.81035 · doi:10.1007/s10910-004-1470-8
[3] Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002) · Zbl 1078.65061 · doi:10.1023/A:1021020705327
[4] Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part. 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001) · Zbl 1022.81008 · doi:10.1023/A:1010947219240
[5] Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part. 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001) · Zbl 1022.81009 · doi:10.1023/A:1010999203310
[6] Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999) · Zbl 0954.65061 · doi:10.1023/A:1019162701521
[7] Amodio P., Gladwell I., Romanazzi G.: Numerical solution of general bordered ABD linear systems by cyclic reduction. J. Numer. Anal. Ind. Appl. Math. 1(1), 5–12 (2006) · Zbl 1108.65017
[8] Aceto L., Pandolfi R., Trigiante D.: Stability analysis of linear multistep methods via polynomial type variation. J. Numer. Anal. Ind. Appl. Math. 2(1–2), 1–9 (2007) · Zbl 1130.65079
[9] Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996) · Zbl 0853.65078 · doi:10.1016/0898-1221(95)00183-Y
[10] Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996) · Zbl 0853.65079 · doi:10.1016/0898-1221(95)00196-4
[11] Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005) · Zbl 1063.65059 · doi:10.1016/j.cam.2004.06.004
[12] Avdelas G., Simos T.E.: A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 72(2), 345–358 (1996) · Zbl 0863.65042 · doi:10.1016/0377-0427(96)00005-2
[13] Chawla M.M., Rao P.S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984) · Zbl 0565.65041 · doi:10.1016/0377-0427(84)90002-5
[14] Capper S.D., Cash J.R., Moore D.R.: Lobatto-Obrechkoff formulae for 2nd order two-point boundary value problems. J. Numer. Anal. Ind. Appl. Math. 1(1), 13–25 (2006) · Zbl 1108.65080
[15] Capper S.D., Moore D.R.: On high order MIRK schemes and Hermite-Birkhoff interpolants. J. Numer. Anal. Ind. Appl. Math. 1(1), 27–47 (2006) · Zbl 1106.65318
[16] Cash J.R., Sumarti N., Abdulla T.J., Vieira I.: The derivation of interpolants for nonlinear two-point boundary value problems. J. Numer. Anal. Ind. Appl. Math. 1(1), 49–58 (2006) · Zbl 1108.65081
[17] Cash J.R., Girdlestone S.: Variable step Runge-Kutta-Nystrm methods for the numerical solution of reversible systems. J. Numer. Anal. Ind. Appl. Math. 1(1), 59–80 (2006) · Zbl 1108.65074
[18] Cash J.R., Mazzia F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. J. Numer. Anal. Ind. Appl. Math. 1(1), 81–90 (2006) · Zbl 1108.65082
[19] Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L.: Barycentric Hermite interpolants for event location in initial-value problems. J. Numer. Anal. Ind. Appl. Math. 3, 1–16 (2008) · Zbl 1188.65014
[20] Corwin S.P., Thompson S., White S.M.: Solving ODEs and DDEs with impulses. J. Numer. Anal. Ind. Appl. Math. 3, 139–149 (2008) · Zbl 1154.65060
[21] Dewar M.: Embedding a general-purpose numerical library in an interactive environment. J. Numer. Anal. Ind. Appl. Math. 3, 17–26 (2008) · Zbl 1168.65436
[22] Enright W.H.: On the use of ’arc length’ and ’defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005) · doi:10.1163/1574040054047586
[23] Herzberg G.: Spectra of diatomic molecules. Van Nostrand, Toronto (1950)
[24] Ixaru L.Gr., Micu M.: Topics in theoretical physics. Central Institute of Physics, Bucharest (1978)
[25] Ixaru L.Gr.: Numerical methods for differential equations and applications. Reidel, Dordrecht (1984) · Zbl 0543.65047
[26] Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980) · doi:10.1016/0010-4655(80)90062-4
[27] Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comp. Phys. Commun. 38(3), 329–337 (1985) · Zbl 0679.65053 · doi:10.1016/0010-4655(85)90100-6
[28] Ixaru L.Gr., Vanden Berghe G.: Exponential fitting, series on mathematics and its applications vol. 568. Kluwer, The Netherlands (2004) · Zbl 1105.65082
[29] Iavernaro F., Mazzia F., Trigiante D.: Stability and conditioning in numerical analysis. J. Numer. Anal. Ind. Appl. Math. 1(1), 91–112 (2006) · Zbl 1108.65041
[30] Iavernaro F., Trigiante D.: Discrete conservative vector fields induced by the Trapezoidal Method. J. Numer. Anal. Ind. Appl. Math. 1(1), 113–130 (2006) · Zbl 1108.65120
[31] Konguetsof A., Simos T.E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger Equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001) · Zbl 1012.65075
[32] Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000) · Zbl 1023.65080 · doi:10.1016/S0096-3003(99)00051-X
[33] Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005) · Zbl 1077.65110 · doi:10.1007/s10910-004-1469-1
[34] Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nystrom methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 · Zbl 1002.65077
[35] Konguetsof A., Simos T.E.: An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45, 547–554 (2003) · Zbl 1035.65071 · doi:10.1016/S0898-1221(03)80036-6
[36] Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003) · Zbl 1041.65104 · doi:10.1016/S0377-0427(03)00479-5
[37] Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003) · Zbl 1027.65171 · doi:10.1016/S0377-0427(03)00478-3
[38] Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003) · Zbl 1027.65094 · doi:10.1016/S0377-0427(03)00469-2
[39] Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008) · Zbl 1154.65063
[40] Knapp R.: A method of lines framework in mathematica. J. Numer. Anal. Ind. Appl. Math. 3, 43–59 (2008) · Zbl 1154.65070
[41] Landau L.D., Lifshitz F.M.: Quantum mechanics. Pergamon, New York (1965) · Zbl 0178.57901
[42] Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976) · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[43] Lipsman R.L., Osborn J.E., Rosenberg J.M.: The SCHOL project at the University of Maryland: using mathematical software in the teaching of Sophomore differential equations. J. Numer. Anal. Ind. Appl. Math. 3, 81–103 (2008) · Zbl 1152.65445
[44] Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006) · Zbl 1125.81021 · doi:10.1007/s10910-006-9167-9
[45] Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005) · Zbl 1073.65071 · doi:10.1007/s10910-004-1468-2
[46] Mazzia F., Sestini A., Trigiante D.: BS linear multistep methods on non-uniform meshes. J. Numer. Anal. Ind. Appl. Math. 1(1), 131–144 (2006) · Zbl 1120.65090
[47] Nedialkov N.S., Pryce J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS code. J. Numer. Anal. Ind. Appl. Math. 3, 61–80 (2008) · Zbl 1188.65111
[48] I. Prigogine, R. Stuart (eds.), Advances in chemical physics: new methods in computational quantum mechanics, vol. 93 (Wiley, London, 1997)
[49] Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor-corrector methods. J. Math. Chem. 40(3), 269–293 (2006) · Zbl 1125.81022 · doi:10.1007/s10910-006-9168-8
[50] Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005) · Zbl 1070.81044 · doi:10.1007/s10910-004-1471-7
[51] Psihoyios G.: A block implicit advanced step-point (BIAS) algorithm for stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006) · doi:10.1163/157404006777491972
[52] Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVP with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996) · Zbl 0874.65058 · doi:10.1016/S0898-1221(96)00181-2
[53] Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005) · Zbl 1063.65060 · doi:10.1016/j.cam.2004.06.014
[54] Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003) · Zbl 1027.65095 · doi:10.1016/S0377-0427(03)00481-3
[55] Papageorgiou C.D., Raptis A.D., Simos T.E.: A method for computing phase-shifts for scattering. J. Comput. Appl. Math. 29(1), 61–67 (1990) · Zbl 0685.65080 · doi:10.1016/0377-0427(90)90195-6
[56] Raptis A.D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978) · doi:10.1016/0010-4655(78)90047-4
[57] Raptis A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984) · Zbl 0592.65046
[58] Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983) · doi:10.1016/0010-4655(83)90036-X
[59] Raptis A.D.: On the numerical solution of the Schrodinger equation. Comput. Phys. Commun. 24, 1–4 (1981) · doi:10.1016/0010-4655(81)90101-6
[60] Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991) · Zbl 0726.65089 · doi:10.1007/BF01952791
[61] Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982) · Zbl 0473.65060 · doi:10.1007/BF02279820
[62] Simos T.E.: Atomic structure computations in chemical modelling: applications and theory. In: Hinchliffe, A. (eds) The Royal Society of Chemistry, pp. 38–142. UMIST, Manchester (2000)
[63] Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, chemical modelling: application and theory. R. Soc. Chem. 2, 170–270 (2002)
[64] Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999) · Zbl 0940.65082 · doi:10.1016/S0097-8485(99)00023-6
[65] T.E. Simos, Numerical solution of ordinary differential equations with periodical solution. Doctoral Dissertation, (National Technical University of Athens, Greece, 1990) (in Greek)
[66] Simos T.E., Williams P.S.: A new Runge-Kutta-Nystrom method with Phase-Lag of order infinity for the numerical solution of the Schrödinger equation. Commun. Math. Comput. Chem. 45, 123–137 (2002) · Zbl 1026.65054
[67] Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. Commun. Math. Comput. Chem. 45, 7–26 (2004) · Zbl 1056.65073
[68] Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006) · Zbl 1125.81023 · doi:10.1007/s10910-006-9170-1
[69] Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005) · Zbl 1070.81045 · doi:10.1007/s10910-004-1472-6
[70] Simos T.E.: Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004) · Zbl 1050.65074 · doi:10.1023/B:JOMC.0000034930.81720.47
[71] Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003) · Zbl 1029.65079 · doi:10.1023/A:1025190512508
[72] Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002) · Zbl 1002.65078 · doi:10.1023/A:1016259830419
[73] Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001) · Zbl 1003.65082 · doi:10.1023/A:1013185619370
[74] Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000) · Zbl 1014.81012 · doi:10.1023/A:1018879924036
[75] Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999) · Zbl 0954.65064 · doi:10.1023/A:1019115929321
[76] Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998) · Zbl 0915.65084 · doi:10.1023/A:1019102131621
[77] Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997) · Zbl 0900.81031 · doi:10.1023/A:1019147124835
[78] Shampine L.F., Muir P.H., Xu H.: A user-friendly Fortran BVP solver. J. Numer. Anal. Ind. Appl. Math. 1(2), 201–217 (2006) · Zbl 1117.65114
[79] Simos T.E.: P-stable four-step exponentially-fitted method for the numerical integration of the Schrödinger equation. Comput. Lett. 1(1), 37–45 (2005) · Zbl 1082.81027 · doi:10.1163/1574040053326316
[80] Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys. C 18(3), 315–328 (2007) · Zbl 1200.65061 · doi:10.1142/S0129183107009261
[81] Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993) · Zbl 0777.65046 · doi:10.1016/0898-1221(93)90303-D
[82] Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993) · Zbl 0791.65054 · doi:10.1016/0898-1221(93)90330-X
[83] Simos T.E.: Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993) · Zbl 0792.65054 · doi:10.1016/0898-1221(93)90054-Y
[84] Simos T.E., Mitsou G.V.: A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation. Comput. Math. Appl. 28, 41–50 (1994) · Zbl 0812.65068 · doi:10.1016/0898-1221(94)00125-1
[85] Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrödinger equation. Comput. Math. Appl. 29, 31–37 (1995) · Zbl 0834.65067 · doi:10.1016/0898-1221(95)00016-R
[86] Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997) · Zbl 0887.65091 · doi:10.1016/S0898-1221(97)00077-1
[87] Simos T.E.: A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 36, 51–63 (1998) · Zbl 0932.65082 · doi:10.1016/S0898-1221(98)00116-3
[88] Simos T.E.: Bessel and Neumann fitted methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 42, 833–847 (2001) · Zbl 0984.65074 · doi:10.1016/S0898-1221(01)00202-4
[89] Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005) · Zbl 1063.65067 · doi:10.1016/j.cam.2004.06.013
[90] Simos T.E.: An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 108(1–2), 177–194 (1999) · Zbl 0956.65063 · doi:10.1016/S0377-0427(99)00109-0
[91] Simos T.E.: An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 91(1), 47–61 (1998) · Zbl 0934.65084 · doi:10.1016/S0377-0427(98)00014-4
[92] Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997) · Zbl 0877.65054 · doi:10.1016/S0377-0427(96)00156-2
[93] Simos T.E.: A family of 4-step exponentially fitted predictor-corrector methods for the numerical-integration of the Schrödinger-equation. J. Comput. Appl. Math. 58(3), 337–344 (1995) · Zbl 0833.65082 · doi:10.1016/0377-0427(93)E0274-P
[94] Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994) · Zbl 0823.65067 · doi:10.1016/0377-0427(94)90015-9
[95] Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta-Nystrom method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994) · Zbl 0872.65066 · doi:10.1016/0377-0427(92)00114-O
[96] Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992) · Zbl 0773.65052 · doi:10.1016/0377-0427(92)90013-N
[97] Simos T.E., Raptis A.D.: A 4th-order Bessel fitting method for the numerical-solution of the SchrÖdinger-equation. J. Comput. Appl. Math. 43(3), 313–322 (1992) · Zbl 0763.65066 · doi:10.1016/0377-0427(92)90017-R
[98] Simos T.E.: Explicit 2-step methods with minimal phase-lag for the numerical-integration of special 2nd-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992) · Zbl 0755.65075 · doi:10.1016/0377-0427(92)90224-L
[99] Simos T.E.: A 4-step method for the numerical-solution of the Schrödinger-equation. J. Comput. Appl. Math. 30(3), 251–255 (1990) · Zbl 0705.65050 · doi:10.1016/0377-0427(90)90278-8
[100] Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Inter. J. Comput. Math. 46, 77–85 (1992) · Zbl 0812.65067 · doi:10.1080/00207169208804140
[101] Sofroniou M., Spaletta G.: Extrapolation methods in mathematica. J. Numer. Anal. Ind. Appl. Math. 3, 105–121 (2008) · Zbl 1154.65062
[102] Spiteri R.J., Ter T.-P.: pythNon: a PSE for the numerical solution of nonlinear algebraic equations. J. Numer. Anal. Ind. Appl. Math. 3, 123–137 (2008) · Zbl 1154.65038
[103] Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004) · Zbl 1044.81031 · doi:10.1023/B:JOMC.0000007812.39332.fa
[104] Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003) · Zbl 1029.65134 · doi:10.1023/A:1025140822233
[105] Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005) · Zbl 1063.65113 · doi:10.1016/j.cam.2004.06.012
[106] Tsitouras C., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002) · Zbl 1013.65073 · doi:10.1016/S0377-0427(02)00475-2
[107] Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997) · Zbl 0890.65083 · doi:10.1016/S0377-0427(97)00188-X
[108] Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996) · Zbl 0855.65086 · doi:10.1016/0377-0427(94)00126-X
[109] Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002) · Zbl 1014.81055 · doi:10.1023/A:1022127007340
[110] Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001) · Zbl 0995.81506 · doi:10.1023/A:1010972322815
[111] Vanden Berghe G., Van Daele M.: Exponentially-fitted Stmer/Verlet methods. J. Numer. Anal. Ind. Appl. Math. 1(3), 241–255 (2006) · Zbl 1127.65050
[112] Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171, 162–174 (2005) · Zbl 1196.65113 · doi:10.1016/j.cpc.2005.05.004
[113] Weckesser W.: VFGEN: a code generation tool. J. Numer. Anal. Ind. Appl. Math. 3, 151–165 (2008) · Zbl 1160.65361
[114] Wittkopf A.: Automatic code generation and optimization in Maple. J. Numer. Anal. Ind. Appl. Math. 3, 167–180 (2008) · Zbl 1160.68689
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.