zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. (English) Zbl 1183.92084
Summary: One of the central issues in ecology is the study of spatial pattern in the distribution of organisms. Thus, in this paper, spatial pattern of a predator-prey system with predator cannibalism is considered. By mathematical analysis, we obtain the condition for emerging Turing pattern formation. Furthermore, numerical simulations reveal that large variety of different spatiotemporal dynamics emerge as the consequence of the interaction of Holling type II with predator cannibalism. The obtained results show that predator cannibalism has great influence on the spatial pattern formation. In other words, the regular pattern is induced by predator cannibalism. Moreover, we find that although the environment is heterogeneous, the system still exhibits Turing patterns, which means the pattern is self-organized. This may help us better understand the dynamics of predator-prey interactions in a real environment.

MSC:
92D40Ecology
37N25Dynamical systems in biology
65C20Models (numerical methods)
References:
[1]Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatiotemporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007) · doi:10.1016/j.jtbi.2006.09.036
[2]Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406 (1998) · Zbl 0895.92032 · doi:10.1007/s002850050105
[3]Jones, L.E., Ellner, S.P.: Evolutionary tradeoff and equilibrium in an aquatic predator–prey system. Bull. Math. Biol. 66, 1547–1573 (2004) · doi:10.1016/j.bulm.2004.02.006
[4]Auger, P., de la Parra, R.B., Morand, S., Sanchez, E.: A predator–prey model with predators using hawk and dove tactics. Math. Biol. 177&178, 185–200 (2002)
[5]Jost, C.: Comparing predator-prey models qualitatively and quanti tatively with ecological time-series data. Ph.D. thesis. Institute National Agronomique, Paris Grignon (1998)
[6]Real, L.A.: The kinetics of functional response. Am. Natl. 111, 289–300 (1977) · doi:10.1086/283161
[7]Boukal, D.S., Sabelisc, M.W., Berec, L.: How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol. 72, 136–147 (2007) · Zbl 1123.92034 · doi:10.1016/j.tpb.2006.12.003
[8]van Baalen, M., Sabelis, M.W.: The milker–killer dilemma in spatially structured predator–prey interactions. Oikos 74, 391–400 (1995) · doi:10.2307/3545984
[9]Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the Allee effect? Oikos 87, 185–190 (1999) · doi:10.2307/3547011
[10]Fox, L.R.: Cannibalism in natural populations. Ann. Rev. Ecol. Syst. 6, 87–106 (1975) · doi:10.1146/annurev.es.06.110175.000511
[11]Meffe, G.K.: Density-dependent cannibalism in the endangered Sonoran topminnow (Poeciliopsis occidentalis). Ann. Rev. Ecol. Syst. 12, 500–503 (1984)
[12]Elgar, M.A., Crespi, B.J. (eds.): Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press, Oxford (1992)
[13]Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002) · Zbl 1001.92050 · doi:10.1137/S0036144502404442
[14]Alonso, D., Bartumeus, F., Catalan, J.: Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–34 (2002) · doi:10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2
[15]Segel, L.A., Jackson, J.L.: Dissipative structure: An explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972) · doi:10.1016/0022-5193(72)90090-2
[16]Levin, S.A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974) · doi:10.1086/282900
[17]Ricklefs, R.E.: Environmental heterogeneity and plant species diversity: A hypothesis. Am. Nat. 111, 376–381 (1977) · doi:10.1086/283169
[18]Okubo, A.: Horizontal dispersion and critical scales for phytoplankton patches. In: Steel, J.H. (ed.) Spatial Pattern in Plankton Communities, p. 21. Plenum, New York (1978)
[19]Mimura, M., Murray, J.D.: On a diffusive prey–predator model which exhibits patchiness. J. Theor. Biol. 75, 249–262 (1979) · doi:10.1016/0022-5193(78)90332-6
[20]Okubo, A.: Diffusion and Ecological Problems: Modern Perspective. Interdisciplinary Applied Mathematics, vol. 14. Springer, Berlin (2001)
[21]Murray, J.D.: A Pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199 (1981) · doi:10.1016/0022-5193(81)90334-9
[22]Bascompte, J., Solé, R.V., Martínez, N.: Population cycles and spatial patterns in snowshoe hares: An individual-oriented simulation. J. Theor. Biol. 187, 213–222 (1997) · doi:10.1006/jtbi.1997.0430
[23]Bascompte, J., Solé, R.V.: Spatiotemporal patterns in nature. Trends Ecol. Evolution 13, 173–174 (1998) · doi:10.1016/S0169-5347(98)01325-1
[24]Neuhauser, C.: Mathematical challenges in spatial ecology. Not. Am. Math. Soc. 47, 1304–1314 (2001)
[25]Baurmann, M.: Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Math. Biosci. Eng. 1, 111–130 (2004)
[26]Lepänen, T.: Computational studies of sattern formation in Turing systems. Ph.D. thesis. Helsinki University of Technology, Finland (2004)
[27]Wang, W., Liu, Q.X., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75, 051903 (2007) · doi:10.1103/PhysRevE.75.051903
[28]Morozov, A., Petrovskii, S., Li, B.L.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006) · doi:10.1016/j.jtbi.2005.05.021
[29]Sherratt, J.A., Lambin, X., Sherratt, T.N.: The effects of the size and shape of landscape features on the formation of traveling waves in cyclic populations. Am. Nat. 162, 503–513 (2003) · doi:10.1086/377186
[30]Ovaskainen, O., Sato, K., Bascompte, J., Hanski, I.: Metapopulation models for extinction threshold in spatially correlated landscapes. J. Theor. Biol. 215, 95–108 (2002) · doi:10.1006/jtbi.2001.2502
[31]Bascompte, J., Rodríguez, M.A.: Self-disturbance as a source of spatiotemporal heterogeneity: The case of the tallgrass prairie. J. Theor. Biol. 204, 153–164 (2000) · doi:10.1006/jtbi.2000.2002
[32]Bascompte, J., Solé, R.V.: Effects of habitat destruction in a prey–predator metapopulation model. J. Theor. Biol. 195, 383–393 (1998) · doi:10.1006/jtbi.1998.0803
[33]Polis, G.A.: The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 12, 225–251 (1981) · doi:10.1146/annurev.es.12.110181.001301
[34]Elgar, M.A., Crespi, B.J.: Ecology and evolution of cannibalism. In: Elgar, M.A., Crespi, B.J. (eds.) Cannibalism, p. 1. Oxford University Press, Oxford (1992)
[35]Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956 (2007) · Zbl 05265673 · doi:10.1007/s11538-006-9062-3
[36]Morozov, A., Petrovskii, S., Li, B.L.: Bifurcations and chaos in a predator–prey system with the Allee effect. Proc. R. Soc. Lond. B 271, 1407–1414 (2004) · doi:10.1098/rspb.2004.2733
[37]Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Chaos in Ecology: Experimental Nonlinear Dynamics. Academic Press, San Diego (2003)