zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Applications of soft sets in ideal theory of BCK/BCI-algebras. (English) Zbl 1184.06014
Summary: The notions of soft ideals and idealistic soft BCK/BCI-algebras are introduced, and several examples are given. Relations between soft BCK/BCI-algebras and idealistic soft BCK/BCI-algebras are provided. The intersection, union, “AND” operation, and “OR” operation of soft ideals and idealistic soft BCK/BCI-algebras are established.
MSC:
06F35BCK-algebras, BCI-algebras
References:
[1]Aktaş, H.; &ccedil, N.; Ağ Man: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007)
[2]Chaudhry, M. A.: Weakly positive implicative and weakly implicative BCI-algebras, Math. jpn. 35, 141-151 (1990) · Zbl 0702.06014
[3]Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parametrization reduction of soft sets and its applications, Comput. math. Appl. 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[4]Davvaz, B.; Dudek, W. A.; Jun, Y. B.: Intuitionistic fuzzy hv-submodules, Inform. sci. 176, 285-300 (2006) · Zbl 1090.16028 · doi:10.1016/j.ins.2004.10.009
[5]Dudek, W. A.; Davvaz, B.; Jun, Y. B.: On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Inform. sci. 170, 251-262 (2005) · Zbl 1072.20088 · doi:10.1016/j.ins.2004.02.025
[6]Y.B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl., in press.
[7]Jun, Y. B.; Öztürk, M. A.; Park, C. H.: Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings, Inform. sci. 177, 4662-4677 (2007) · Zbl 1129.16041 · doi:10.1016/j.ins.2007.03.020
[8]Jun, Y. B.; Shim, W. H.: Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras, Inform. sci. 170, 351-361 (2005) · Zbl 1071.06012 · doi:10.1016/j.ins.2004.03.009
[9]Jun, Y. B.; Song, S. Z.: Generalized fuzzy interior ideals in semigroups, Inform. sci. 176, 3079-3093 (2006) · Zbl 1102.20058 · doi:10.1016/j.ins.2005.09.002
[10]Jun, Y. B.; Xu, Y.; Ma, J.: Redefined fuzzy implicative filters, Inform. sci. 177, 1422-1429 (2007) · Zbl 1111.03325 · doi:10.1016/j.ins.2006.08.018
[11]Jun, Y. B.; Xu, Y.; Zhang, X. H.: Fuzzy filters of MTL-algebras, Inform. sci. 175, 120-138 (2005) · Zbl 1077.03044 · doi:10.1016/j.ins.2004.11.004
[12]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[13]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[14]Molodtsov, D.: Soft set theory – first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[15]Meng, J.; Jun, Y. B.: BCK-algebras, (1994)
[16]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Inform. sci. 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[17]Pawlak, Z.; Skowron, A.: Rough sets: some extensions, Inform. sci. 177, 28-40 (2007) · Zbl 1142.68550 · doi:10.1016/j.ins.2006.06.006
[18]Pawlak, Z.; Skowron, A.: Rough sets and Boolean reasoning, Inform. sci. 177, 41-73 (2007) · Zbl 1142.68551 · doi:10.1016/j.ins.2006.06.007
[19]Rosenfeld, A.: Fuzzy groups, J. math. Anal. appl. 35, 512-517 (1971) · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[20]Zadeh, L. A.: From circuit theory to system theory, Proc. inst. Radio eng. 50, 856-865 (1962)
[21]Zadeh, L. A.: Fuzzy sets, Inform. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[22]Zadeh, L. A.: Toward a generalized theory of uncertainty (GTU) – an outline, Inform. sci. 172, 1-40 (2005) · Zbl 1074.94021 · doi:10.1016/j.ins.2005.01.017