zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hom-algebra structures. (English) Zbl 1184.17002
Summary: Hom-algebra structures are given on linear spaces by multiplications twisted by linear maps. Hom-Lie algebras and general quasi-Hom-Lie and quasi-Lie algebras were introduced by Hartwig, Larsson and Silvestrov as algebras embracing Lie algebras, super and color Lie algebras and their quasi-deformations by twisted derivations. In this paper we introduce and study Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic structures generalizing associative, Leibniz and Lie admissible algebras. Also, we characterize flexible Hom-algebras and explain some connections and differences between Hom-Lie algebras and Santilli’s isotopies of associative and Lie algebras.

MSC:
17A30Nonassociative algebras satisfying other identities
16Y99Generalizations of associative rings and algebras
17A32Leibniz algebras