zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dependence-space-based attribute reductions in inconsistent decision information systems. (English) Zbl 1184.68514
Summary: In rough set theory, attribute reduction is an important mechanism for knowledge discovery. This paper mainly deals with attribute reductions of an inconsistent decision information system based on a dependence space. Through the concept of inclusion degree, a generalized decision distribution function is first constructed. A decision distribution relation is then defined. On the basis of this decision distribution relation, a dependence space is proposed, and an equivalence congruence based on the indiscernibility attribute sets is also obtained. Applying the congruences on a dependence space, new approaches to find a distribution consistent set are formulated. The judgement theorems for judging distribution consistent sets are also established by using these congruences and the decision distribution relation.
MSC:
68T37Reasoning under uncertainty
References:
[1]Bazan, J.: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables, Rough sets in knowledge discovery, 321-365 (1998) · Zbl 1067.68711
[2]Beynon, M.: Reducts within the variable precision rough sets model: a further investigation, European journal of operational research 134, 592-605 (2001) · Zbl 0984.90018 · doi:10.1016/S0377-2217(00)00280-0
[3]Järvinen, J.: Difference functions of dependence spaces, Acta cybernetica 14, No. 4, 619-630 (2001) · Zbl 0973.08001
[4]Komorowski, J.; Pawlak, Z.; Polkowski, L.; Skowron, A.: Rough sets: tutorial, Rough fuzzy hybridization, A new trend in decision making, 3-98 (1999)
[5]Kryszkiewicz, M.: Comparative study of alternative type of knowledge reduction in inconsistent systems, International journal of intelligent systems 16, 105-120 (2001) · Zbl 0969.68146 · doi:10.1002/1098-111X(200101)16:1<105::AID-INT8>3.0.CO;2-S
[6]Kryszkiewicz, M.: Rough set approach to incomplete information systems, Information sciences 112, 39-49 (1998) · Zbl 0951.68548 · doi:10.1016/S0020-0255(98)10019-1
[7]Khan, Md.A.; Banerjee, M.: Formal reasoning with rough sets in multiple-source approximation systems, International journal of approximate reasoning 49, No. 2, 466-477 (2008) · Zbl 1191.68684 · doi:10.1016/j.ijar.2008.04.005
[8]Leung, Y.; Wu, W. -Z.; Zhang, W. -X.: Knowledge acquisition in incomplete information systems: a rough set approach, European journal of operational research 168, 164-180 (2006) · Zbl 1136.68528 · doi:10.1016/j.ejor.2004.03.032
[9]Leung, Y.; Fischer, M. M.; Wu, W. -Z.; Mi, J. -S.: A rough set approach for the discovery of classification rules in interval-valued information systems, International journal of approximate reasoning 47, 233-246 (2008) · Zbl 1184.68409 · doi:10.1016/j.ijar.2007.05.001
[10]Liu, G. -L.: Axiomatic systems for rough sets and fuzzy rough sets, International journal of approximate reasoning 48, No. 3, 857-867 (2008)
[11]J.-M. Ma, W.-X. Zhang, S. Cai, Variable Threshold concept lattice and dependence space, FSKD 2006, LNAI 4223, 2006, pp. 109 – 118.
[12]J.-M. Ma, W.-X. Zhang, X. Wang, Dependence space of concept lattices based on rough set, in: IEEE International Conference on Granular Computing, 2006, pp. 200 – 204.
[13]J.-S. Mi, W.-Z. Wu, W.-X. Zhang, Approaches to approximation reducts in inconsistent decision tables, RSFDGrC 2003, LNAI 2639, 2003, pp. 283 – 286.
[14]Mi, J. -S.; Wu, W. -Z.; Zhang, W. -X.: Approaches to knowledge reduction based on variable precision rough set model, Information sciences 159, 255-272 (2004)
[15]Mieszkowicz-Rolka, A.; Rolka, L.: Fuzzy rough approximations of process data, International journal of approximate reasoning 49, No. 2, 301-315 (2008)
[16]H.S. Nguyen, D. Slezak, Approximation reducts and association rules correspondence and complexity results, in: N. Zhong, A. Skowron, S. Oshuga (Eds.), Proceedings of RSFDGrC 99, Yamaguchi, Japan, LNAI 1711, 1999, pp. 137 – 145. · Zbl 0954.68129
[17]Novotný, M.: Dependence spaces of information systems, Incomplete informations: rough sets analysis, 193-246 (1998)
[18]Pawlak, Z.: Rough sets, International journal of computer and information science 11, No. 5, 341-356 (1982)
[19]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[20]D. Slezak, Approximate reducts in decision tables, in: Proceedings of IPMU96, Granada, Spain, 3, 1996, pp. 1159 – 1164.
[21]D. Slezak, Searching for dynamic reducts in inconsistent decision tables, in: Proceedings of IPMU98, Paris, France, 2, 1998, pp. 1362 – 1369.
[22]Slezak, D.: Searching for frequential reducts in decision tables with uncertain objects, Rough sets and current trends in computing, 52-59 (1998)
[23]Slezak, D.; Wroblewski, J.: Application of normalized decision measures to the new case classification, Rough sets and current trends in computing, 553-560 (2000) · Zbl 1014.68539 · doi:http://link.springer.de/link/service/series/0558/bibs/2005/20050553.htm
[24]Slezak, D.: Normalized decision functions and measures for inconsistent decision tables analysis, Fundamental information 44, No. 3, 291-319 (2000) · Zbl 0970.68171
[25]Wu, W. -Z.; Zhang, M.; Li, H. -Z.: Knowledge reduction in random information systems via Dempster – Shafer theory of evidence, Information sciences 174, 143-164 (2005) · Zbl 1088.68169 · doi:10.1016/j.ins.2004.09.002
[26]Xu, Z. -S.; Yager, R. R.: Dynamic intuitionistic fuzzy multi-attribute decision making, International journal of approximate reasoning 48, 246-262 (2008) · Zbl 1185.91073 · doi:10.1016/j.ijar.2007.08.008
[27]Yager, R. R.: On the soundness of altering granular information, International journal of approximate reasoning 45, 43-67 (2007) · Zbl 1123.68121 · doi:10.1016/j.ijar.2006.06.003
[28]Yao, Y.: Probabilistic rough set approximations, International journal of approximate reasoning 49, No. 2, 255-271 (2008)
[29]Yang, Y. -J.; John, R. I.: Generalisation of roughness bounds in rough set operations, International journal of approximate reasoning 48, No. 3, 868-878 (2008) · Zbl 1189.03065 · doi:10.1016/j.ijar.2008.02.002
[30]Zhang, W. -X.; Mi, J. -S.; Wu, W. -Z.: Approaches to knowledge reductions in inconsistent systems, International journal of intelligent systems 18, 989-1000 (2003) · Zbl 1069.68606 · doi:10.1002/int.10128
[31]Zhang, W. -X.; Leung, Y.; Wu, W. -Z.: Information systems and knowledge discovery, (2003)
[32]Zhang, W. -X.; Qiu, G. -F.: Uncertain decision making based on rough sets, (2005)
[33]Ziarko, W.: Variable precision rough set model, Journal of computer and system sciences 46, No. 1, 39-59 (1993) · Zbl 0764.68162 · doi:10.1016/0022-0000(93)90048-2
[34]Ziarko, W.: Probabilistic approach to rough sets, International journal of approximate reasoning 49, No. 2, 272-284 (2008) · Zbl 1191.68705 · doi:10.1016/j.ijar.2007.06.014