zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. (English) Zbl 1184.93093
Summary: The global asymptotical stability analysis problem is considered for a class of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. An alternative delay-dependent stability analysis result is established based on the Linear Matrix Inequality (LMI) technique, which can easily be checked by utilizing the numerically efficient Matlab LMI toolbox. Neither system transformation nor free weight matrix via Newton-Leibniz formula is required. Two numerical examples are provided to show that the proposed results significantly improve the allowable upper and lower bounds of delays over some existing results in the literature.
MSC:
93D09Robust stability of control systems
60J75Jump processes
92B20General theory of neural networks (mathematical biology)
34B45Boundary value problems for ODE on graphs and networks