zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability analysis of linear fractional differential system with multiple time delays. (English) Zbl 1185.34115

Summary: We study the stability of a system of linear fractional differential equations with time delays. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist.

We present some examples.

34K37Functional-differential equations with fractional derivatives
34K20Stability theory of functional-differential equations
34K06Linear functional-differential equations
[1]Hale, J.K., Verdugn Lunel, S.M., Introduction to Functional Differential Equations. Springer-Verlag, New York (1991)
[2]Deng, W.H., Wu, Y.J., Li, C.P.: Stability analysis of differential equations with time-dependent delay. Int. J. Bif. Chaos. 16(2), 465–472 (2006) · Zbl 1112.34056 · doi:10.1142/S0218127406014939
[3]Li, C.P., Sun, W.G., Kurths, J.: Synchronization of complex dynamical networks with time delays. Physica A 361, 24–34 (2006) · doi:10.1016/j.physa.2005.07.007
[4]Li, C.P., Sun, W.G., Xu, D.: Synchronization of complex dynamical networks with nonlinear inner-coupling functions and time delays. Prog. Theor. Phys. 114(4), 749–761 (2005) · Zbl 1094.34056 · doi:10.1143/PTP.114.749
[5]Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience, New York (1993)
[6]Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
[7]Butzer, P.L., Westphal, U.: An Introduction to Fractional Calculus. World Scientific, Singapore (2000)
[8]Agrawal, O.P., Tenreiro Machado, J.A., Sabatier, J.: Introduction. Nonlinear Dyn. 38(1–2), 1–2 (2004)
[9]Kempfle, S., Schäfer, I., Beyer, H.: Fractional calculus: theory and applications. Nonlinear Dyn. 29(1–4), 99–127 (2002)
[10]Matignon, D.: Stability result on fractional differential equations with applications to control processing. In: Proceedings of IMACS-SMC, pp. 963–968, Lille, France (1996)
[11]Chen, Y., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002) · Zbl 1020.34064 · doi:10.1023/A:1016591006562
[12]Muth, E.J.: Transform Methods with Applications to Engineering and Operations Research. Prentice-Hall, New Jersey (1977)
[13]Franklin, P.: Functions of Complex Variables. Prentice-Hall, New Jersey (1958)
[14]Chen, Y., Moore, K.L.: Analytical stability bound for delayed second-order systems with repeating poles using Lambert function ω. Automatica 38, 891–895 (2002) · Zbl 1020.93019 · doi:10.1016/S0005-1098(01)00264-3
[15]Deng, W.H., Li, C.P.: Synchronization of chaotic fractional Chen system. J. Phys. Soc. Jpn. 74, 1645–1648 (2005) · Zbl 1080.34537 · doi:10.1143/JPSJ.74.1645
[16]Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lü system. Physica A 353, 61–72 (2005) · doi:10.1016/j.physa.2005.01.021
[17]Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic system via a scaler transmitted signal. Physica A 359, 107–118 (2005) · doi:10.1016/j.physa.2005.04.040
[18]Lu, J.G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solitons Fractals 27(2), 519–525 (2006) · Zbl 1086.94007 · doi:10.1016/j.chaos.2005.04.032
[19]Zhou, T.S., Li, C.P.: Synchronization in fractional-order differential systems. Physica D 212, 111–125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[20]Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171–185 (2006) · doi:10.1016/j.physa.2005.06.078
[21]Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)
[22]Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013