zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
1-soliton solution of the generalized Zakharov equation in plasmas by He’s variational principle. (English) Zbl 1185.35208
Summary: This paper obtains the 1-soliton solution to Zakharov equation with power law and dual-power law nonlinearities. He’s variational principle is used to carry out the integration of this equation.
35Q51Soliton-like equations
35C08Soliton solutions of PDE
35A15Variational methods (PDE)
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
[1]Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg – Landau equation with power law nonlinearity, Progress in electromagnetics research 96, 1-7 (2009)
[2]He, J. H.: Variational iteration method – a kind of non-linear analytical technique: some examples, International journal of nonlinear mechanics 34, No. 4, 699-708 (1999)
[3]He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, solitons and fractals 99, No. 4, 847-851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[4]Hong, B.; Lu, D.; Sun, F.: The extended Jacobi elliptic functions expansion method and new exact solutions for the Zakharov equations, World journal of modelling and simulation 5, No. 3, 216-224 (2009)
[5]Kohl, R.; Biswas, A.; Milovic, D.; Zerrad, E.: Optical solitons by he’s variational principle in a non-Kerr law media, Journal of infrared, millimeter and terrahertz waves 30, No. 5, 526-537 (2009)
[6]Wakil, S. A. E.; Degheidy, A. R.; Abulwafa, E. M.; Madkour, M. A.; Abdou, M. A.: Exact travelling wave solutions of generalized Zakharov equations with arbitrary power nonlinearities, International journal of nonlinear science 7, No. 4, 455-461 (2009)
[7]Wazwaz, A. M.: The sine – cosine and tanh methods: reliable tools for analytic treatment of nonlinear dispersive equations, Applied mathematics and computation 173, No. 1, 150-154 (2006) · Zbl 1089.65111 · doi:10.1016/j.amc.2005.02.047
[8]Wazwaz, A. M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Applied mathematics and computation 187, No. 2, 1131-1142 (2007) · Zbl 1118.65370 · doi:10.1016/j.amc.2006.09.013
[9]Lin, Y. X.; Shi, T. J.: Explicit exact solutions for the generalized Zakharov equations with nonlinear terms of any order, Computers and mathematics with applications 57, 1622-1629 (2009) · Zbl 1186.34007 · doi:10.1016/j.camwa.2009.01.021
[10]Zhang, J.: Variational approach to solitary wave solution of the generalized Zakharov equation, Computers and mathematics with applications 54, 1043-1046 (2007) · Zbl 1141.65391 · doi:10.1016/j.camwa.2006.12.048