zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a dynamical system with multiple chaotic attractors. (English) Zbl 1185.37081
Summary: The chaotic behavior of the Rabinovich-Fabrikant system, a model with multiple topologically different chaotic attractors, is analyzed. Because of the complexity of this system, analytical and numerical studies of the system are very difficult tasks. Following the investigation of this system carried out in [third and fourth author, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, No. 10, 3409–3447 (2004; Zbl 1129.37314)], this paper verifies the presence of multiple chaotic attractors in the system. Moreover, the Monte Carlo hypothesis test (or, equivalently, surrogate data test) is applied to the system for the detection of chaos.
MSC:
37D45Strange attractors, chaotic dynamics
37C70Attractors and repellers, topological structure