[1] | O. Arino, E. Sanchez, A. Fathallah, State-dependent delay differential equations in population dynamics: modeling and analysis, Fields Institute Communications, vol. 29, American Mathematical Society, Providence, RI, 2001, pp. 19–36. · Zbl 1002.34073 |

[2] | Xu, R.; Chaplin, M. A.; Dadivson, F. A.: Persistence and stability of a stage-structured predator–prey model with time delays, Applied mathematics and computation 150, 259-277 (2004) · Zbl 1064.92049 · doi:10.1016/S0096-3003(03)00226-1 |

[3] | Gourley, S. A.; Kuang, Y.: A stage structured predator–prey model and its dependence on maturation delay and death rate, Journal of mathematical biology 49, 188-200 (2004) · Zbl 1055.92043 · doi:10.1007/s00285-004-0278-2 |

[4] | Zhang, X.; Chen, L.; Neumann, U. A.: The stage-structured predator–prey model and optimal harvesting policy, Mathematical biosciences 168, 201-210 (2000) · Zbl 0961.92037 · doi:10.1016/S0025-5564(00)00033-X |

[5] | Bandyopadhyay, M.; Banerjee, S.: A stage-structured prey–predator model with discrete time delay, Applied mathematics and computation 182, 1385-1398 (2006) · Zbl 1102.92044 · doi:10.1016/j.amc.2006.05.025 |

[6] | Myerscough, M. R.; Gray, B. F.; Hogarth, W. L.; Norbury, J.: An analysis of an ordinary differential equations model for a two species predator–prey system with harvesting and stocking, Journal of mathematical biology 30, 389-411 (1992) · Zbl 0749.92022 · doi:10.1007/BF00173294 |

[7] | Song, X.; Chen, L.: Optimal harvesting and stability for a two-species competitive system with stage structure, Mathematical biosciences 170, 173-186 (2001) · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7 |

[8] | Song, X.; Chen, L.: Optimal harvesting and stability for a predator–prey system with stage structure, Acta Mathematica applicate sinicia, English series 18, No. 3, 423-430 (2002) · Zbl 1054.34125 · doi:10.1007/s102550200042 |

[9] | Kar, T. K.: Selective harvesting in a prey–predator fishery with time delay, Mathematical and computer modelling 38, 449-458 (2003) · Zbl 1045.92046 · doi:10.1016/S0895-7177(03)90099-9 |

[10] | Kar, T. K.; Pahari, U. K.: Modelling and analysis of a prey–predator system with stage-structure and harvesting, Nonlinear analysis: real world applications 8, 601-609 (2007) · Zbl 1152.34374 · doi:10.1016/j.nonrwa.2006.01.004 |

[11] | Gordon, H. S.: The economic theory of a common property resource: the fishery, Journal of political economy 62, No. 2, 124-142 (1954) |

[12] | Zhang, Y.; Zhang, Q. L.: Chaotic control based on descriptor bioeconomic systems, Control and decision 22, No. 4, 445-452 (2007) |

[13] | Zhang, Y.; Zhang, Q. L.; Zhao, L. C.: Bifurcations and control in singular biological economical model with stage structure, Journal of systems engineering 22, No. 3, 232-238 (2007) · Zbl 1153.93398 |

[14] | X. Zhang, et al., Bifurcations of a class of singular biological economic models. Chaos, Solitons and Fractals 42 (2) (2009) 1485–1494 |

[15] | Dai, L.: Singular control system, (1989) |

[16] | Marszalek, W.; Trzaska, Z. W.: Singularity-induced bifurcations in electrical power system, IEEE transactions on power systems 20, No. 1, 302-310 (2005) |

[17] | Ayasun, S.; Nwankpa, C. O.; Kwatny, H. G.: Computation of singular and singularity induced bifurcation points of differential-algebraic power system model, IEEE transactions on circuits system. I 51, No. 8, 1525-1537 (2004) |

[18] | Yue, M.; Schlueter, R.: Bifurcation subsystem and its application in power system analysis, IEEE transactions on power system 19, No. 4, 1885-1893 (2004) |

[19] | Venkatasubramanian, V.; Schaettler, H.; Zaborszky, J.: Local bifurcations and feasibility regions in differential-algebraic systems, IEEE transactions on automatic control 40, No. 12, 1992-2013 (1995) · Zbl 0843.34045 · doi:10.1109/9.478226 |

[20] | Venkatasubramanian, V.: Singularity induced bifurcation and the Van den Pol oscillator, IEEE transactions on circuits system. I 41, 765-769 (1994) · Zbl 0872.34037 · doi:10.1109/81.331534 |

[21] | Beardmore, R. E.: The singularity-induced bifurcation and its Kronecker normal form, SIAM journal of matrix analysis and application 23, No. 1, 126-137 (2001) · Zbl 1002.34028 · doi:10.1137/S089547989936457X |

[22] | Yang, L. J.; Tang, Y.: An improved version of the singularity induced-bifurcation theorem, IEEE transactions on automatic control 49, No. 6, 1483-1486 (2001) · Zbl 1031.93097 · doi:10.1109/9.948482 |

[23] | Kot, M.: Elements of mathematical biology, (2001) |

[24] | Freedman, H.; Rao, V. S. H.: The trade-off between mutual interference and time lags in predator–prey systems, Bulletin of mathematical biology 45, 991-1004 (1983) · Zbl 0535.92024 |

[25] | Hale, J. K.: Theory of functional differential equations, (1997) |

[26] | Clark, C. W.: Mathematical bioeconomics: the optimal management of renewable resource, (1990) · Zbl 0712.90018 |

[27] | Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002 |