zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. (English) Zbl 1185.65054
Summary: We present a general family of iterative methods to solve linear equations, which includes the well-known Jacobi and Gauss-Seidel iterations as its special cases. The methods are extended to solve coupled Sylvester matrix equations. In our approach, we regard the unknown matrices to be solved as the system parameters to be identified, and propose a least-squares iterative algorithm by applying a hierarchical identification principle and by introducing the block-matrix inner product (the star product for short). We prove that the iterative solution consistently converges to the exact solution for any initial value. The algorithms proposed require less storage capacity than the existing numerical ones. Finally, the algorithms are tested on computer and the results verify the theoretical findings.
MSC:
65F10Iterative methods for linear systems
15A24Matrix equations and identities
References:
[1]Wang, Q. W.: Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. math. Appl. 49, 641-650 (2005) · Zbl 1138.15003 · doi:10.1016/j.camwa.2005.01.014
[2]Wang, Q. W.; Sun, J. H.; Li, S. Z.: Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear algebra appl. 353, 169-182 (2002)
[3]Wang, Q. W.; Zhang, F.: The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear algebra 17, 88-101 (2008) · Zbl 1147.15012 · doi:http://www.math.technion.ac.il/iic/ela/toc/17.html
[4]Wang, Q. W.; Zhang, H. S.; Yu, S. W.: On solutions to the quaternion matrix equation AXB+CY D=E, Electron. J. Linear algebra 17, 343-358 (2008) · Zbl 1154.15019 · doi:emis:journals/ELA/toc/17.html
[5]Wang, Q. W.; Chang, H. X.; Ning, Q.: The common solution to six quaternion matrix equations with applications, Appl. math. Comput. 198, 209-226 (2008) · Zbl 1141.15016 · doi:10.1016/j.amc.2007.08.091
[6]Wang, Q. W.; Li, C. K.: Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear algebra appl. 430, 1626-1640 (2009) · Zbl 1158.15010 · doi:10.1016/j.laa.2008.05.031
[7]Zhou, B.; Duan, G. R.; Li, Z. Y.: Gradient based iterative algorithm for solving coupled matrix equations, Syst. contr. Lett. 58, 327-333 (2009) · Zbl 1159.93323 · doi:10.1016/j.sysconle.2008.12.004
[8]Huang, G. X.; Yin, F.; Guo, K.: An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C, J. comput. Appl. math. 212, 231-244 (2008) · Zbl 1146.65036 · doi:10.1016/j.cam.2006.12.005
[9]Ding, F.; Liu, P. X.; Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. math. Comput. 197, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040
[10]Wang, Q. W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear algebra appl. 384, 43-54 (2004) · Zbl 1058.15015 · doi:10.1016/j.laa.2003.12.039
[11]Piao, F.; Zhang, Q.; Wang, Z.: The solution to matrix equation AX+XTC=B, J. franklin inst. 344, 1056-1062 (2007) · Zbl 1171.15015 · doi:10.1016/j.jfranklin.2007.05.002
[12]Starke, G.; Niethammer, W.: SOR for AX-XB=C, Linear algebra appl. 154, 355-375 (1991) · Zbl 0736.65031 · doi:10.1016/0024-3795(91)90384-9
[13]Kitagawa, G.: An algorithm for solving the matrix equation X=FXFT+S, Int. J. Contr. 25, 745-753 (1977) · Zbl 0364.65025 · doi:10.1080/00207177708922266
[14]Kleinman, D. L.; Rao, P. K.: Extensions to the bartels-stewart algorithm for linear matrix equation, IEEE trans. Autom. contr. 23, 85-87 (1978) · Zbl 0369.65005 · doi:10.1109/TAC.1978.1101681
[15]Golub, G. H.; Nash, S.; Van Loan, C.: A Hessenberg-Schur method for the problem AX+XB=C, IEEE trans. Automat. contr. 24, 909-913 (1979) · Zbl 0421.65022 · doi:10.1109/TAC.1979.1102170
[16]Ding, F.; Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations, IEEE trans. Autom. contr. 50, 1216-1221 (2005)
[17]Ding, F.; Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations, Syst. contr. Lett. 54, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[18]Ding, F.; Chen, T.: On iterative solutions of general coupled matrix equations, SIAM J. Contr. optim. 44, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[19]Hu, D. Y.; Reichel, L.: Krylov subspace methods for the Sylvester equation, Linear algebra appl. 174, 283-314 (1992)
[20]Jaimoukha, I. M.; Kasenally, E. M.: Krylov subspace methods for solving large Lyapunov equations, SIAM J. Matrix anal. Appl. 31, 227-251 (1994)
[21]Jaimoukha, I. M.; Kasenally, E. M.: Oblique projection methods for large scale model reduction, SIAM J. Matrix anal. Appl. 16, 602-627 (1995)
[22]Bao, L.; Lin, Y.; Wei, Y.: A new projection method for solving large Sylvester equations, Appl. numer. Math. 57, 521-532 (2007) · Zbl 1118.65028 · doi:10.1016/j.apnum.2006.07.005
[23]Zhou, B.; Duan, G. R.: A new solution to the generalized Sylvester matrix equation AV-EVF=BW, Syst. contr. Lett. 55, 193-198 (2006) · Zbl 1129.15300 · doi:10.1016/j.sysconle.2005.07.002
[24]Zhou, B.; Duan, G. R.: On the generalized Sylvester mapping and matrix equations, Syst. contr. Lett. 57, 200-208 (2008) · Zbl 1129.93018 · doi:10.1016/j.sysconle.2007.08.010
[25]Robbé, M.; Sadkane, M.: Use of near-breakdowns in the block arnoldi method for solving large Sylvester equations, Appl. numer. Math. 58, 486-498 (2008) · Zbl 1136.65046 · doi:10.1016/j.apnum.2007.01.025
[26]Zhou, B.; Li, Z. Y.; Duan, G. R.; Wang, Y.: Solutions to a family of matrix equations by using the Kronecker matrix polynomials, Appl. math. Comput. 212, 327-336 (2009) · Zbl 1181.15020 · doi:10.1016/j.amc.2009.02.021
[27]Zhou, B.; Duan, G. R.: An explicit solution to the matrix equation AX-XF=BY, Linear algebra appl. 402, 345-366 (2005) · Zbl 1076.15016 · doi:10.1016/j.laa.2005.01.018
[28]Zhou, B.; Yan, Z. B.: Solutions to right coprime factorizations and generalized Sylvester matrix equations, Trans. inst. Meas. contr. 30, 397-426 (2008)
[29]Zhou, B.; Duan, G. R.: Solutions to generalized Sylvester matrix equation by Schur decomposition, Int. J. Syst. sci. 38, 369-375 (2007) · Zbl 1126.65034 · doi:10.1080/00207720601160215
[30]Zhou, B.; Li, Z. Y.; Duan, G. R.; Wang, Y.: Weighted least squares solutions to general coupled Sylvester matrix equations, J. comput. Appl. math. 224, 759-776 (2009) · Zbl 1161.65034 · doi:10.1016/j.cam.2008.06.014
[31]Zhou, B.; Lam, J.; Duan, G. R.: On Smith-type iterative algorithms for the Stein matrix equation, Appl. math. Lett. 22, 1038-1044 (2009) · Zbl 1179.15016 · doi:10.1016/j.aml.2009.01.012
[32]Ding, F.; Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica 41, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[33]Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE trans. Autom. contr. 50, 397-402 (2005)
[34]Dehghan, M.; Hajarian, M.: An iterative algorithm for solving a pair of matrix equations AYB=E, CYD=F over generalized centro-symmetric matrices, Comput. math. Appl. 56, 3246-3260 (2008) · Zbl 1165.15301 · doi:10.1016/j.camwa.2008.07.031
[35]Dehghan, M.; Hajarian, M.: An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation, Appl. math. Comput. 202, 571-588 (2008) · Zbl 1154.65023 · doi:10.1016/j.amc.2008.02.035
[36]Dehghan, M.; Hajarian, M.: On the reflexive solutions of the matrix equation AXB+CYD=E, Bull. korean math. Soc. 46, 511-519 (2009) · Zbl 1170.15004 · doi:10.4134/BKMS.2009.46.3.511
[37]Dehghan, M.; Hajarian, M.: Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1+A2X2B2=C, Math. comput. Model. 49, 1937-1959 (2009) · Zbl 1171.15310 · doi:10.1016/j.mcm.2008.12.014
[38]M. Dehghan, M. Hajarian, The reflexive and anti-reflexive solutions of a linear matrix equation and systems of matrix equations, Rocky Mountain J. Math., in press. · Zbl 1198.15011 · doi:10.1216/RMJ-2010-40-3-825
[39]Dehghan, M.; Hajarian, M.: Efficient iterative method for solving the second-order Sylvester matrix equation EVF2-AVF-CV=BW, IET control theory appl. 3, 1401-1408 (2009)
[40]M. Dehghan, M. Hajarian, On the reflexive and anti-reflexive solutions of the generalized coupled Sylvester matrix equations, Int. J. Syst. Sci., in press. · Zbl 1196.65081 · doi:10.1080/00207720903072357
[41]Peng, Y. X.; Hu, X. Y.; Zhang, L.: An iteration method for the symmetric solutions and the optimal appromation solution of the matrix equation AXB=C, Appl. math. Comput. 160, 763-777 (2005) · Zbl 1068.65056 · doi:10.1016/j.amc.2003.11.030
[42]Liang, M. L.; You, C. H.; Dai, L. F.: An efficient algorithm for the generalized centro-symmetric solution of matrix equation AXB=C, Numer. algor. 4, 173-184 (2007) · Zbl 1129.65030 · doi:10.1007/s11075-007-9097-z
[43]Zhou, B.; Duan, G. R.: Closed-form solutions to the matrix equation AX – EXF = BY with F in companion form, Int. J. Autom. comput. 6, 204-209 (2009)
[44]Ramadan, M. A.: Necessary and suffcient conditions for the existence of positive definite solutions of the matrix equation X + ATX - 2A = I, Int. J. Comput. math. 82, 865-870 (2005) · Zbl 1083.15020 · doi:10.1080/00207160412331336107
[45]Ramadan, M. A.; Danaf, T. S. E.; Shazly, N. M. E.: Iterative positive definite solutions of the two nonlinear matrix equations X±ATX - 2A = I, Appl. math. Comput. 164, 189-200 (2005) · Zbl 1072.65065 · doi:10.1016/j.amc.2004.04.080
[46]Ramadan, M. A.; Shazly, N. M. E.: On the matrix equation X+ATX-12mA=I, Appl. math. Comput. 173, 992-1013 (2006)