zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on double splittings of different monotone matrices. (English) Zbl 1185.65058
The authors consider the double splitting of the form A=P-R+S, P nonsingular of a given nonsingular matrix A and derive for it comparison theorems involving the iteration matrix of the corresponding iterative method involving three successive approximations.

MSC:
65F10Iterative methods for linear systems
References:
[1]Benzi, M., Szyld, D.B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods. Numer. Math. 76, 309–321 (1997) · Zbl 0905.65048 · doi:10.1007/s002110050265
[2]Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)
[3]Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)
[4]Climent, J.J., Perea, C.: Some comparison theorems for weak nonnegative splittings of bounded operators. Linear Algebra Appl. 275–276, 77–106 (1998) · Zbl 0936.65063 · doi:10.1016/S0024-3795(97)10065-9
[5]Climent, J.J., Perea, C.: Convergence and comparison theorems for multisplittings. Numer. Linear Algebra Appl. 6, 93–107 (1999) · doi:10.1002/(SICI)1099-1506(199903)6:2<93::AID-NLA149>3.0.CO;2-8
[6]Climent, J.J., Perea, C.: Convergence and comparison theorems for a generalized alternate iterative method. Appl. Math. Comput. 143, 1–14 (2003) · Zbl 1040.65029 · doi:10.1016/S0096-3003(02)00339-9
[7]Elsner, L., Frommer, A., Nabben, R., Schneider, H., Szyld, D.B.: Conditions for strict inequality in comparisons of spectral radii of splittings of different matrices. Linear Algebra Appl. 363, 65–80 (2003) · Zbl 1018.65049 · doi:10.1016/S0024-3795(01)00535-3
[8]Golub, C.H., Varga, R.S.: Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods–I. Numer. Math. 3, 147–168 (1961) · doi:10.1007/BF01386013
[9]Jedrzejec, H.A., Woźniki, Z.I.: On properties of some matrix splittings. Electron. J. Linear Algebra 8, 47–52 (2001)
[10]Nabben, R.: A note on comparison theorems for splittings and multisplittings of Hermitian positive definite matrices. Linear Algebra Appl. 233, 67–80 (1996) · Zbl 0841.65019 · doi:10.1016/0024-3795(94)00050-6
[11]Shen, S.Q., Huang, T.Z.: Convergence and comparison theorems for double splittings of matrices. Comput. Math. Appl. 51, 1751–1760 (2006) · Zbl 1134.65341 · doi:10.1016/j.camwa.2006.02.006
[12]Shen, S.Q., Huang, T.Z., Shao, J.L.: Convergence and comparison results for double splittings of Hermitian positive definite matrices. Calcolo 44, 127–135 (2007) · Zbl 1150.65008 · doi:10.1007/s10092-007-0132-1
[13]Song, Y.Z.: Comparisons of nonnegative splittings of matrices. Linear Algebra Appl. 154–156, 433–455 (1991) · Zbl 0732.65024 · doi:10.1016/0024-3795(91)90388-D
[14]Song, Y.Z.: Comparison theorems for splittings of matrices. Numer. Math. 92, 563–291 (2002) · Zbl 1012.65028 · doi:10.1007/s002110100333
[15]Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)
[16]Woźniki, Z.I.: Estimation of the optimum relaxation factors in partial factorization iterative methods. SIAM J. Matrix Anal. Appl. 14, 59–73 (1993) · Zbl 0767.65025 · doi:10.1137/0614005
[17]Woźniki, Z.I.: Nonnegative splitting theory. Jpn. J. Ind. Appl. Math. 11, 289–342 (1994) · Zbl 0805.65033 · doi:10.1007/BF03167226
[18]Woźniki, Z.I.: Basic comparison theorems for weak and weaker matrix splittings. Electron. J. Linear Algebra 8, 53–59 (2001)