zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Identification of surgical practice patterns using evolutionary cluster analysis. (English) Zbl 1185.68529
Summary: Modern data analysis and machine learning are strongly dependent on efficient search techniques. However, in general, further exploration into high-dimensional and multi-modal spaces is needed, and moreover, many real-world problems exhibit inaccurate, noisy, discrete and complex data. Thus, robust methods of optimization are often required to generate results suitable for these data. Some algorithms that imitate certain natural principles, namely the so-called evolutionary algorithms, have been used in different fields with great success. In this paper, we apply a variant of Particle Swarm Optimization (PSO), recently introduced by the authors, to partitional clustering of a real-world data set to distinguish between perioperative practices and associate them with some unknown relevant facts. Our data were obtained from a survey conducted in Spain based on a pool of colorectal surgeons. The PSO derivative we consider here: (i) is adapted to consider mixed discrete-continuous optimization, with statistical clustering criteria arranged to take these types of mixed measures; (ii) is able to find optimum or near-optimum solutions much more efficiently and with considerably less computational effort because of the richer population diversity it introduces; and (iii) is able to select the right parameter values through self-adaptive dynamic parameter control, thus overcoming the cumbersome aspect common to all metaheuristics.
MSC:
68T05Learning and adaptive systems
90C59Approximation methods and heuristics
92C50Medical applications of mathematical biology
62H30Classification and discrimination; cluster analysis (statistics)
References:
[1]Bonabeau, E.; Dorigo, M.; Théraulaz, G.: From natural to artificial swarm intelligence, (1999)
[2]Kennedy, J.; Eberhart, R. C.: Swarm intelligence, (2001)
[3]Dong, Y.; Tang, B. X. J.; Wang, D.: An application of swarm optimization to nonlinear programming, Computers mathematics with applications 49, No. 11–12, 1655-1668 (2005) · Zbl 1127.90407 · doi:10.1016/j.camwa.2005.02.006
[4]Janson, S.; Merkle, D.; Middendorf, M.: Molecular docking with multi-objective particle swarm optimization, Applied soft computing 8, 666-675 (2008)
[5]Jin, Y. X.; Cheng, H. Z.; Yan, J. I.; Zhang, L.: New discrete method for particle swarm optimization and its application in transmission network expansion planning, Electric power systems research 77, No. 3–4, 227-233 (2007)
[6]Liao, C. J.; Tseng, C. T.; Luarn, P.: A discrete version of particle swarm optimization for flowshop scheduling problems, Computers and operations research 34, No. 10, 3099-3111 (2007) · Zbl 1185.90083 · doi:10.1016/j.cor.2005.11.017
[7]Pan, Q. K.; Tasgetiren, F.; Liang, Y. C.: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem, Computers and operations research 35, No. 9, 2807-2839 (2008) · Zbl 1144.90393 · doi:10.1016/j.cor.2006.12.030
[8]Montalvo, I.; Izquierdo, J.; Pérez, R.; Tung, M. M.: Particle swarm optimization applied to the design of water supply systems, Computer mathematics with applications 56, No. 3, 769-776 (2008) · Zbl 1155.90486 · doi:10.1016/j.camwa.2008.02.006
[9]Montalvo, I.; Izquierdo, J.; Pérez, R.; Iglesias, P. L.: A diversity-enriched variant of discrete PSO applied to the design of water distribution networks, Engineering optimization 40, No. 7, 655-668 (2008)
[10]Izquierdo, J.; Montalvo, I.; Pérez, R.; Fuertes, V. S.: Design optimization of wastewater collection networks by PSO, Computer mathematics with applications 56, No. 3, 777-784 (2008) · Zbl 1155.90335 · doi:10.1016/j.camwa.2008.02.007
[11]Everitt, B.: Cluster analysis, Biometrics 37, No. 2, 417-418 (1981)
[12]Hastie, T.; Tibshirani, R.; Friedman, J.: Elements of statistical learning: data mining, inference and prediction, (2001)
[13]Roig, J. V.; Rodríguez-Carrillo, R.; García-Armengol, J.; Villalba, F. L.; Salvador, A.; Sancho, C.; Albors, P.; Puchades, F.; Fuster, C.: Multimodal rehabilitation in colorectal surgery. On resistance to change in surgery and the demands of society, Cirugía española 81, No. 6, 307-315 (2007)
[14]Kehlet, H.; Wilmore, D. W.: Evidence-based surgical care and the evolution of fast-track surgery, Annals of surgery 248, No. 2, 189-198 (2008)
[15]Hardman, J.; Carlson, G. L.: Evidence-based perioperative care is lost in translation, British journal of surgery 95, No. 7, 807-808 (2008)
[16]Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ, 1998, pp. 69–73
[17]Shi, Y.; Eberhart, R. C.: Empirical study of particle swarm optimization, (1999)
[18]Ratnaweera, A.; Halgamuge, S. K.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient, IEEE transactions on evolutionary computation 8, No. 3, 240-255 (2004)
[19]Arumugam, M. S.; Rao, M. V. C.: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems, Applied soft computing 8, 324-336 (2008)
[20]J.V. Roig, A. García-Fadrique, C. Redondo, F.L. Villalba, A. Salvador, J. García-Armengol, Perioperative care in colorectal surgery. Current practice and opinions, Colorectal Disease (2008) [Epub ahead of print] PMID: 19175633
[21]Guenaga, K. F.; Matos, D.; Castro, A. A.; Atallah, A. N.; Wille-Jorgensen, P.: Mechanical bowel preparation for elective colorectal surgery, Cochrane database systematic reviews, No. 2, CD001544 (2003)
[22]Roig, J. V.; García-Fadrique, A.; García-Armengol, J.; Bruna, M.; Redondo, C.; García-Coret, M. J.; Albors, P.: Mechanical bowel cleansing and antibiotic prophylaxis in colorectal surgery. Use and opinions of Spanish surgeons, Colorectal disease 11, No. 1, 44-48 (2009)
[23]Nelson, R.; Edwards, S.; Tse, B.: Prophylactic nasogastric decompression after abdominal surgery, Cochrane database systematic reviews, No. 1, CD004929 (2005)
[24]Roig, J. V.; García-Fadrique, A.; García-Armengol, J.; Villalba, F. L.; Bruna, M.; Sancho, C.; Puche, J.: Use of nasogastric tubes and drains after colorectal surgery. Have attitudes changed in the last 10 years?, Cirugía española 83, No. 2, 78-84 (2008)
[25]Ng, W. Q.; Neill, J.: Evidence for early oral feeding of patients after elective open colorectal surgery: A literature review, Journal of clinical nursing 15, No. 6, 696-709 (2006)
[26]Kaufman, L.; Rousseeauw, P. J.: Finding groups in data: an introduction to cluster analysis, (1990)
[27]Hartigan, J. A.; Wong, M. A.: A K-means clustering algorithm, Applied statistics 28, 100-108 (1979) · Zbl 0447.62062 · doi:10.2307/2346830
[28]Likas, A.; Vlassis, N.; Vebeek, J. L.: The global K-means clustering algorithm, Pattern recognition 36, 451-461 (2003)
[29]Friedman, H. P.; Rubin, J.: On some invariant criteria for grouping data, Journal of American statistical association 6, No. 2, 1159-1178 (1967)
[30]Mcgregor, A.; Hall, M.; Lorier, P.; Brunskill, J.: Flow clustering using machine learning techniques, Lecture notes in computer science (Passive and active network measurements) 3015/2004 (2004)
[31]D. Barbará, J. Couto, Y. Li, An entropy-based algorithm for categorical clustering, in: Proceedings of Information and Knowledge Management, CIKM, 2002
[32]Brock, G.; Pihur, V.; Datta, S.; Datta, S.: Clvalid: an R package for cluster validation, Journal of statistical software 25, No. 4, 1-22 (2008)
[33]P. Rousseeuw, A. Struyf, M. Hubert, M. Maechler, Cluster: Cluster Analysis Extended Rousseeuw et al., R package version 1.11.11. URL http://CRAN.R-project.org/package=cluster (accessed 14.09.08)