zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time-harmonic sources in a generalized magneto-thermo-viscoelastic continuum with and without energy dissipation. (English) Zbl 1185.74015
Summary: An attempt is made to estimate the influence due to a time-harmonic normal point load or thermal source in a homogeneous isotropic magneto-thermo-viscoelastic half-space. The system of fundamental equations is solved by using Hankel transform. The inverse transform integrals using Romberg integration with adaptive stepwise after using the results from successive refinements of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step-size tends to zero. The two special cases: (i) normal point load acting on the surface and (ii) thermal point source acting on the surface, are studied in the cases of with and without energy dissipation of magneto-thermo-viscoelasticity. The displacements, temperature and stress components have been obtained in analytical form. Finally, the results obtained are displayed numerically and presented graphically for copper material.
MSC:
74F15Electromagnetic effects in solid mechanics
References:
[1]Lord, H. W.; Shulman, Y.: A generalized dynamical theory of thermoelasticity, J. mech. Phys. solids 15, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[2]Green, A. E.; Lindsay, A.: Thermoelasticity, J. elasticity 2, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[3]Achenbach, J. D.: Wave propagation in elastic solids, (1973)
[4]Chandrasekharaiah, D. S.: Thermoelasticity with second sound – a review, Appl. mech. Rev. 39, 355-376 (1986) · Zbl 0588.73006 · doi:10.1115/1.3143705
[5]Iesan, D.; Scalia, A.: Thermoelastic deformations, (1996)
[6]Nowinski, W.: Theory of thermoelasticity with applications, (1978)
[7]Guyer, R. A.; Krumhansl, J. A.: Solution of the linearized phonon Boltzmann equation, Phys. rev. 148, No. 2, 766-778 (1966)
[8]Ackerman, C. C.; Overton, W. C.: Second sound in helium-3, Phys. rev. Lett. 22, 764-766 (1969)
[9]Coleman, B. D.; Fabrizio, M.; Owen, D. R.: Lecture notes in physics, books series, thermodynamics and the constitutive relations for second sound in crystals, Lecture notes in physics, books series, thermodynamics and the constitutive relations for second sound in crystals 228 (1985)
[10]Green, A. E.; Naghdi, P. M.: A re-examination of the basic postulates of thermodynamics, Proc. roy. Soc. London ser. A 432, 171-194 (1991) · Zbl 0726.73004 · doi:10.1098/rspa.1991.0012
[11]Green, A. E.; Naghdi, P. M.: On undamped heat waves in an elastic solid, J. thermal stresses 15, 252-264 (1992)
[12]Green, A. E.; Naghdi, P. M.: Thermoelasticity without energy dissipation, J. elasticity 31, 189-208 (1993) · Zbl 0784.73009 · doi:10.1007/BF00044969
[13]Hossen, F. R. Golam; Mallet, A.: Thermoelastic waves without energy dissipation in an elastic plate due to suddenly punched hole, Sci. technol. Res. J. 6, 1-17 (2000)
[14]Li, Honig; Dhaliwal, R. S.: Thermal shock problem in thermoelasticity without energy dissipation, Ind. J. Pure appl. Math. 27, 85-101 (1996) · Zbl 0843.73018
[15]Chandrasekharaiah, D. S.: One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation, J. thermal stresses 19, 695-710 (1996)
[16]Chandrasekharaiah, D. S.; Srinath, K. S.: Thermoelastic interactions without energy dissipation due to a point heat source, J. elasticity 50, 97-108 (1998) · Zbl 0918.73020 · doi:10.1023/A:1007412106659
[17]Quintanilla, R.: On existence in thermoelasticity without energy dissipation, J. thermal stresses 25, 195-202 (2002)
[18]Nayfeh, A.; Nasser, S. N.: Transient thermoelastic waves in a half-space with thermal relaxations, J. appl. Math. phys. 23, 50-67 (1972) · Zbl 0237.73016 · doi:10.1007/BF01593202
[19]De-Hoop, A. T.: A modification of cagniard’s method for solving seismic pulse problems, Appl. sci. Res. BS, 349-356 (1960) · Zbl 0100.44208 · doi:10.1007/BF02920068
[20]Sharma, J. N.: Transient generalized thermoelastic waves in a transversely isotropic half-space, Bull. Polish acad. Sci. tech. Sci. 34, 632-646 (1986) · Zbl 0609.73012
[21]Noda, N.; Furukawa, T.; Ashida, F.: Generalized thermoelasticity in an infinite solid with a hole, J. thermal stresses 12, 385-402 (1989)
[22]Nayfeh, A. H.; Nasser, S. N.: Thermoelastic waves in solids with thermal relaxation, Acta mech. 12, 53-69 (1971) · Zbl 0241.73026 · doi:10.1007/BF01178389
[23]Abd-Alla, A. M.; Hammad, H. A. H.; Abo-Dahab, S. M.: Rayleigh waves in a magnetoelastic half-space of orthotropic material under influence of pressure and gravity field, Appl. maths. Comput. 154, 583-597 (2004) · Zbl 1078.74018 · doi:10.1016/S0096-3003(03)00767-7
[24]Abd-Alla, A. M.; Hammad, H. A. H.; Abo-Dahab, S. M.: Magneto-thermo-viscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading, Appl. maths. Comput. 155, No. 1, 235-248 (2004) · Zbl 1101.74030 · doi:10.1016/S0096-3003(03)00773-2
[25]Roychoudhuri, S. K.; Banerjee, S.: Magneto-thermoelastic interactions in an infinite viscoelastic cylinder of temperature-rate dependent material subjected to a periodic loading, Int. J. Eng. sci. 36, No. 5/6, 635-643 (1998)
[26]Chandrasekharaiah, D. S.; Srikantiah, K. R.: Some theorems in temperature-rate dependent theory of thermoelasticity, Proc. ind. Acad. sci. (Math sci.) 92, 135-141 (1983) · Zbl 0542.73005 · doi:10.1007/BF02876758
[27]Sharma, J. N.; Chauhan, R. S.; Kumar, R.: Time-harmonic sources in a generalized thermoelastic continuum, J. thermal stresses 23, 657-674 (2000)
[28]Othman, Mohamed I. A.; Atwa, Sarhan Y.; Farouk, R. M.: Generalized magneto-thermo-viscoelastic plane waves under the effect of rotation without energy dissipation, Int. J. Eng. sci. 46, 639-653 (2008) · Zbl 1213.74160 · doi:10.1016/j.ijengsci.2008.01.018
[29]Quintanilla, R.: Thermoelasticity without energy dissipation of materials with microstructure, Appl. math. Modell. 26, 1125-1137 (2002) · Zbl 1029.74013 · doi:10.1016/S0307-904X(02)00078-1
[30]Ciarletta, M.; Straughan, B.; Zampoli, V.: Thermo-poroacoustic acceleration waves in elastic materials with voids without energy dissipation, Int. J. Eng. sci. 45, 736-743 (2007) · Zbl 1213.74095 · doi:10.1016/j.ijengsci.2007.05.001
[31]Roychoudhuri, S. K.; Dutta, Partha S.: Thermo-elastic interaction without energy dissipation in an in finite solid with distributed periodically varying heat sources, Int. J. Solids struct. 42, 4192-4203 (2005) · Zbl 1120.74444 · doi:10.1016/j.ijsolstr.2004.12.013
[32]Roychoudhuri, S. K.; Bandyopadhyay, Nupur: Interactions due to body forces in generalized thermo-elasticity III, Comput. math. Appl. 54, 1341-1352 (2007) · Zbl 1173.74009 · doi:10.1016/j.camwa.2006.10.036
[33]Song, Y. Q.; Zhang, Y. C.; Lu, B. H.: Transient disturbance in a half space under thermoelasticity with two relaxation times due to moving internal heat source, Int. J. Thermodyn. 24, No. 1, 299-318 (2003)