zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. (English) Zbl 1185.74032
Summary: Static pull-in instability of electrostatically-actuated microbridges and microcantilevers is investigated considering different nonlinear effects. Galerkin’s decomposition method is utilized to convert the nonlinear differential equations of motion to nonlinear integro-algebraic equations. Afterward, analytic solutions to static deflections of the microbeams are obtained using the homotopy perturbation method. Results are in excellent agreement with those presented in the literature.
MSC:
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
65M99Numerical methods for IVP of PDE
74H10Analytic approximation of solutions for dynamical problems in solid mechanics
74M25Micromechanics
References:
[1]Abdel-Rahman, E. M.; Younis, M. I.; Nayfeh, A. H.: Characterization of the mechanical behavior of an electrically actuated microbeam, J. micromech. Microeng. 12, 759-766 (2002)
[2]Ijntema, D. J.; Tilmans, H. A.: Static and dynamic aspects of an air-gap capacitor, Sensors actuat. A 35, 121-128 (1992)
[3]Tilmans, H. A.; Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance, Sensors actuat. A 45, 67-84 (1994)
[4]Choi, B.; Lovell, E. G.: Improved analysis of microbeams under mechanical and electrostatic loads, J. micromech. Microeng 7, 24-29 (1997)
[5]Bochobza-Degani, O.; Elata, D.; Nemirovsky, Y.: An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS device, J. microelectromech. Syst., 11612-11620 (2002)
[6]Elata, D.; Bochobza-Degani, O.; Nemirovsky, Y.: Analytical approach and numerical a-lines method for pull-in hyper-surface extraction of electrostatic actuator with multiple uncoupled voltages sources, J. microelectromech. Syst. 12, 681-691 (2003)
[7]Bochobza-Degani, O.; Nemirovsky, Y.: Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model, Sensors actuat. A 97 – 98, 569-578 (2002)
[8]Bochobza-Degani, O.; Nemirovsky, Y.: Experimental verification of a design methodology for torsion actuators based on a rapid pull-in solver, J. microelectromech. Syst. 13, 121-130 (2004)
[9]Pamidighantam, S.; Puers, R.; Baert, K.; Tilman, H.: Pull-in voltage analysis of electrostatically actuated beam structures with fixed – fixed and fixed-free end conditions, J. micromech. Microeng. 12, 458-464 (2002)
[10]Lobontiu, N.; Garcia, E.: Two microcantilever designs: lumped-parameter model for static and modal analysis, J. microelectromech. Syst. 13, 41-50 (2004)
[11]Zhang, Y.; Zhao, Y. P.: Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading, Sensors actuat. A 127, 366-380 (2006)
[12]Hu, Y. C.: Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads, J. micromech. Microeng. 16, 648-655 (2006)
[13]Kuang, J. H.; Chen, C. J.: Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method, J. micromech. Microeng. 14, No. 4, 647-655 (2004)
[14]Zand, M. Moghimi; Ahmadian, M. T.: Characterization of coupled-domain multi-layer microplates in pull-in phenomenon vibrations and dynamics, Int. J. Mech. sci. 49, No. 11, 1226-1237 (2007)
[15]Zand, M. Moghimi; Ahmadian, M. T.: Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects, Commun. nonlinear sci. Numer. simulat. 14, No. 4, 1664-1678 (2009)
[16]Konig, E. R.; Wachutka, G.: Multi-parameter homotopy for the numerical analysis of MEMS, Sensors actuat. A – phys. 110, 39-51 (2004)
[17]Nayfeh, A. H.; Younis, M. I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze film damping, J. micromech. Microeng. 14, 170-181 (2004)
[18]M.I. Younis, Modeling and Simulation of Microelectromechanical Systems in Multi-physics Fields, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 2004.
[19]Liao, S. J.: Beyond perturbation. Introduction to homotopy analysis method, (2004)
[20]He, J. H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-linear mech. 35, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[21]Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. lett. A 360, 109-113 (2006)
[22]Abbasbandy, S.: The application of homotopy analysis method to solve a generalized Hirota – satsuma coupled KdV equation, Phys. lett. A 361, 478-483 (2007)
[23]Hayat, T.; Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. lett. A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[24]Younis, M. I.; Nayfeh, A. H.: A study of the nonlinear response of a resonant microbeam to an electric actuation, Nonlinear dyn. 31, 91-117 (2003) · Zbl 1047.74027 · doi:10.1023/A:1022103118330
[25]Younis, M. I.; Nayfeh, A. H.; Abdel-Rahman, E. M.: Reduced-order models for MEMS applications, Nonlinear dyn. 41, 211-236 (2005) · Zbl 1142.74327 · doi:10.1007/s11071-005-2809-9
[26]Nayfeh, A. H.: Problems in perturbation, (1985) · Zbl 0573.34001
[27]Rao, S. S.: Mechanical vibrations, (2004)
[28]M. Moghimi Zand, M.T. Ahmadian, Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces, Proc. Inst. Mech. Eng., Part C, submitted for publication.