zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decay of potential vortex for a viscoelastic fluid with fractional Maxwell model. (English) Zbl 1185.76523
Summary: This paper is concerned with the exact analytic solutions for the velocity field and the associated tangential stress corresponding to a potential vortex for a fractional Maxwell fluid. The fractional calculus approach is taken into account in the constitutive relationship of a non-Newtonian fluid model. Exact analytic solutions are obtained by using the Hankel transform and the discrete Laplace transform of sequential fractional derivatives. The solutions for a Maxwell fluid appear as the limiting cases of our general solutions by setting α=1. The influence of fractional coefficient on the decay of vortex velocity is also analyzed by graphical illustrations.
MSC:
76D17Viscous vortex flows
26A33Fractional derivatives and integrals (real functions)
References:
[1]Rajagopal, K. R.: Mechanics of non-Newtonian fluids, Pitman research notes in mathematics 291, 129-162 (1993) · Zbl 0818.76003
[2]Rajagopal, K. R.; Bhatnagar, R. K.: Exact solutions for simple flows of an Oldroyd-B fluid, Acta mech. 113, 233-239 (1995) · Zbl 0858.76010 · doi:10.1007/BF01212645
[3]Hayat, T.; Siddiqui, A. M.; Asghar, S.: Some simple flows of an Oldroyd-B fluid, Int. J. Eng. sci. 39, 135-147 (2001)
[4]Hayat, T.; Khan, M.; Ayub, M.: Exact solutions of flow problems of an Oldroyd-B fluid, Appl. math. Comput. 151, 105-119 (2004) · Zbl 1039.76001 · doi:10.1016/S0096-3003(03)00326-6
[5]Tan, W. C.; Masuoka, T.: Stokes first problem for an Oldroyd-B fluid in a porous half space, Phys. fluids 17, 023101 (2005) · Zbl 1187.76517 · doi:10.1063/1.1850409
[6]Fetecau, C.; Fetecau, Corina: Decay of a potential vortex in a Maxwell fluid, Int. J. Nonlinear mech. 38, 985-990 (2003)
[7]Fetecau, C.; Fetecau, Corina; Vieru, D.: On some helical flows of Oldroyd-B fluids, Acta mech. 189, 53-63 (2007) · Zbl 1108.76008 · doi:10.1007/s00707-006-0407-7
[8]Fetecau, C.; Fetecau, Corina: The first problem of Stokes for an Oldroyd-B fluid, Int. J. Nonlinear mech. 38, 1539-1544 (2003)
[9]Chen, C. I.; Chen, C. K.; Yang, Y. T.: Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different volume flow rate conditions, Heat mass trans. 42, 203-209 (2004)
[10]Hayat, T.; Khan, M.; Ayub, M.: On the explicit analytic solutions of an Oldroyd 6-constant fluid, Int. J. Eng. sci. 42, 123-135 (2004) · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[11]Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech. 168, 213-232 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[12]Zhang, Z.; Fu, C.; Tan, W. C.: Onset of oscillatory convection in a porous cylinder saturated with a viscoelastic fluid, Phys. fluids 19, 098104 (2007) · Zbl 1182.76871 · doi:10.1063/1.2773739
[13]Fu, C.; Zhang, Z.; Tan, W. C.: Numerical simulation of thermal convection of a viscoelastic fluid in a porous square box heated from below, Phys. fluids 19, 104107 (2007) · Zbl 1182.76257 · doi:10.1063/1.2800358
[14]Tan, W. T.; Masuoka, T.: Stability analysis of a Maxwell fluid in a porous medium heated from below, Phys. lett. A 360, 454-460 (2006)
[15]Song, D. Y.; Jiang, T. Q.: Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application, Rheol. acta 37, 512-517 (1998)
[16]Tan, W. C.; Xu, M. Y.: The impulsive motion of flat plate in a generalized second order fluids, Mech. res. Commun. 29, 3-9 (2002) · Zbl 1151.76368 · doi:10.1016/S0093-6413(02)00223-9
[17]Tan, W. C.; Pan, W. X.; Xu, M. Y.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int. J. Nonlinear mech. 38, 615-620 (2003)
[18]Qi, H. T.; Jin, H.: Unsteady rotating flows of viscoelastic fluid with the fractional Maxwell model between coaxial cylinders, Acta mech. Sinica 22, 301-305 (2006) · Zbl 1202.76016 · doi:10.1007/s10409-006-0013-x
[19]Qi, H. T.; Xu, M. Y.: Stokes first problem for a viscoelastic fluid with the generalized Oldroyd-B model, Acta mech. Sinica 23, 463-469 (2007) · Zbl 1202.76017 · doi:10.1007/s10409-007-0093-2
[20]Khan, M.; Nadeem, S.; Hayat, T.; Siddiqui, A. M.: Unsteady motions of a generalized second grade fluid, Math. comput. Modell. 41, 629-637 (2005) · Zbl 1080.76007 · doi:10.1016/j.mcm.2005.01.029
[21]Khan, M.; Maqbool, K.; Hayat, T.: Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space, Acta mech. 184, 1-13 (2006) · Zbl 1096.76061 · doi:10.1007/s00707-006-0326-7
[22]Khan, M.; Hayat, T.; Asghar, S.: Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy’s law, Int. J. Eng. sci. 44, 333-339 (2006) · Zbl 1213.76024 · doi:10.1016/j.ijengsci.2005.12.004
[23]Tan, W. C.; Fu, C.; Xie, W.; Cheng, H.: An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. phys. Lett. 91, 183901 (2007)
[24]El-Shahed, M.: MHD of a fractional viscoelastic fluid in a circular tube, Mech. res. Commun. 33, 216-268 (2006) · Zbl 1192.76067 · doi:10.1016/j.mechrescom.2005.02.017
[25]Shen, F.; Tan, W. C.; Zhao, Y. H.; Masuoka, T.: Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid, Appl. math. Mech. 25, 1151-1159 (2004) · Zbl 1088.76004 · doi:10.1007/BF02439867
[26]Khan, M.: Partial slip effects on the oscillatory flows of a fractional Jeffrey fluid in a porous medium, J. porous media 10, 473-488 (2007)
[27]Hayat, T.; Khan, M.; Asghar, S.: On the MHD flow of a fractional generalized Burgers fluid with modified Darcy’s law, Acta mech. Sinica 23, 257-261 (2007) · Zbl 1202.76155 · doi:10.1007/s10409-007-0078-1
[28]Vieru, D.; Fetecau, Corina; Fetecau, C.: Flow of a viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate, Appl. math. Comput. 200, 459-464 (2008) · Zbl 1158.76005 · doi:10.1016/j.amc.2007.11.017
[29]Hilfer, R.: Applications of fractional calculus in physics, (2000)
[30]Fetecau, C.; Fetecau, Corina: Decay of a potential vortex in an Oldroyd-B fluid, Int. J. Eng. sci. 43, 340-351 (2005) · Zbl 1211.76008 · doi:10.1016/j.ijengsci.2004.08.013
[31]Sneddon, I. N.: Fourier transforms, (1951)
[32]Miller, K. S.: An introduction to the fractional calculus and fractional differential equation, (1993)
[33]Debnath, L.; Bhatta, D.: Integral transforms and their applications, (2007)