zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spin symmetry for Dirac equation with the trigonometric Pöschl-Teller potential. (English) Zbl 1185.81075
Summary: Within the framework of the Dirac theory, the relativistic bound states for the trigonometric Pöschl-Teller (PT) potential are obtained in the case of spin symmetry. It is found from the numerical results that there exist only positive energy states for bound states in the case of spin symmetry. Also, the energy levels approach a constant when the potential parameter α goes to zero. The special case for equally scalar and vector trigonometric PT potential is also studied briefly.
81Q05Closed and approximate solutions to quantum-mechanical equations
81V35Applications of quantum theory to nuclear physics
[1]Arima, A., Harvey, M., Shimizu, K.: Phys. Lett. B 30, 517 (1969) · doi:10.1016/0370-2693(69)90443-2
[2]Hecht, K.T., Adeler, A.: Nucl. Phys. A 137, 129 (1969) · doi:10.1016/0375-9474(69)90077-3
[3]Bohr, A., Hamamoto, I., Mottelson, B.R.: Phys. Scr. 26, 267 (1982) · doi:10.1088/0031-8949/26/4/003
[4]Dudek, J., Nazarewicz, W., Szymanski, Z., Leander, G.A.: Phys. Rev. Lett. 59, 1405 (1987) · doi:10.1103/PhysRevLett.59.1405
[5]Troltenier, D., Bahri, C., Draayer, J.P.: Nucl. Phys. A 586, 53 (1995) · doi:10.1016/0375-9474(94)00518-R
[6]Ginocchio, J.N.: Phys. Rev. Lett. 95, 252501 (2005) · doi:10.1103/PhysRevLett.95.252501
[7]Ginocchio, J.N.: Phys. Rev. Lett. 78, 436 (1997) · doi:10.1103/PhysRevLett.78.436
[8]Meng, J., Sugawara-Tanabe, K., Yamaji, S., Ring, P., Arima, A.: Phys. Rev. C 58, R628 (1998) · doi:10.1103/PhysRevC.58.R628
[9]Lisboa, R., Malheiro, M., De Castro, A.S., Alberto, P., Fiolhais, M.: Phys. Rev. C 69, 024319 (2004) · doi:10.1103/PhysRevC.69.024319
[10]De Castro, A.S., Alberto, P., Lisboa, R., Malheiro, M.: Phys. Rev. C 73, 054309 (2006) · doi:10.1103/PhysRevC.73.034602
[11]Guo, J.Y., Sheng, Z.Q.: Phys. Lett. A 338, 90 (2005) · Zbl 1136.81357 · doi:10.1016/j.physleta.2005.02.026
[12]Berkdemir, C.: Nucl. Phys. A 770, 32 (2006) · doi:10.1016/j.nuclphysa.2006.03.001
[13]Qiang, W.C., Zhou, R.S., Gao, Y.: J. Phys. A, Math. Theor. 40, 1677 (2007) · Zbl 1108.81024 · doi:10.1088/1751-8113/40/7/016
[14]Bayrak, O., Boztosun, I.: J. Phys. A, Math. Theor. 40, 11119 (2007) · Zbl 1122.81081 · doi:10.1088/1751-8113/40/36/012
[15]Soylu, A., Bayrak, O., Boztosun, I.: J. Phys. A, Math. Theor. 41, 065308 (2008) · Zbl 1133.81018 · doi:10.1088/1751-8113/41/6/065308
[16]Jia, C.S., Guo, P., Peng, X.L.: J. Phys. A, Math. Theor. 39, 7737 (2006) · Zbl 1094.81021 · doi:10.1088/0305-4470/39/24/010
[17]Zhang, L.H., P, Li.X., Jia, C.S.: Phys. Lett. A 372, 2201 (2008) · Zbl 1220.81101 · doi:10.1016/j.physleta.2007.11.022
[18]Wei, G.F., Dong, S.H.: Phys. Lett. A 373, 49 (2008) · Zbl 1227.81174 · doi:10.1016/j.physleta.2008.10.064
[19]Alhaidari, A.D., Bahlouli, H., Al-Hasan, A.: Phys. Lett. A 349, 87 (2006) · Zbl 1195.81043 · doi:10.1016/j.physleta.2005.09.008
[20]Pöschl, G., Teller, E.: Z. Phys. 83, 143 (1933) · doi:10.1007/BF01331132
[21]Chen, G.: Acta Phys. Sin. 50, 1651 (2001) (in Chinese)
[22]Zhang, M.C., Wang, Z.B.: Acta Phys. Sin. 55, 0525 (2006) (in Chinese)
[23]Wei, G.F., Dong, S.H.: Eur. Phys. Lett. 87, 40004 (2009) · doi:10.1209/0295-5075/87/40004
[24]Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 5th edn. Academic Press, New York (1994)