zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Single machine scheduling problems under the effects of nonlinear deterioration and time-dependent learning. (English) Zbl 1185.90097
Summary: Job deterioration and machine learning co-exist in various real life scheduling settings. This paper studies several single machine scheduling problems under the joint effect of nonlinear job deterioration and time-dependent learning. We assume that the processing time of a job increases when its processing is delayed. In addition, it is assumed that the machine undergoes a learning process, decreasing the time required to process a given job. The following objectives are considered: the makespan, the sum of completion times (square) and the maximum lateness. We derive polynomial-time optimal solutions for all the objectives.

MSC:
90B35Scheduling theory, deterministic
68T05Learning and adaptive systems
References:
[1]Biskup, D.: Single-machine scheduling with learning considerations, European journal of operational research 115, 173-178 (1999) · Zbl 0946.90025 · doi:10.1016/S0377-2217(98)00246-X
[2]Mosheiov, G.: Scheduling problems with a learning effect, European journal of operational research 132, 687-693 (2001) · Zbl 1017.90051 · doi:10.1016/S0377-2217(00)00175-2
[3]Mosheiov, G.; Sidney, J. B.: Scheduling with general job-dependent learning curves, European journal of operational research 147, 665-670 (2003) · Zbl 1037.90529 · doi:10.1016/S0377-2217(02)00358-2
[4]Eren, T.; Güner, E.: Minimizing total tardiness in a scheduling problem with a learning effect, Applied mathematical modelling 31, No. 7, 1351-1361 (2007) · Zbl 1145.90021 · doi:10.1016/j.apm.2006.03.030
[5]Kuo, W. H.; Yang, D. L.: Single machine group scheduling with a time dependent learning effect, European journal of operational research 33, 2099-2112 (2006) · Zbl 1086.90025 · doi:10.1016/j.cor.2004.11.024
[6]Chen, P.; Wu, C. -C.; Lee, W. -C.: A bi-criteria two-machine flowshop scheduling problem with a learning effect, Journal of operational research society 57, No. 9, 1113-1125 (2006) · Zbl 1171.90394 · doi:10.1057/palgrave.jors.2602095
[7]Koulamas, C.; Kyparisis, G. J.: Single machine and two machine flowshop scheduling with general learning functions, European journal of operational research 178, No. 2, 402-407 (2007) · Zbl 1107.90018 · doi:10.1016/j.ejor.2006.01.030
[8]Kuo, W. H.; Yang, D. L.: Minimizing the total completion time in a single machine scheduling problem with a time dependent learning effect, European journal of operational research 174, No. 2, 1184-1190 (2006) · Zbl 1103.90341 · doi:10.1016/j.ejor.2005.03.020
[9]Mosheiov, G.: Λ-shaped policies to schedule deteriorating jobs, The journal of operational research society 47, 1184-1191 (1996) · Zbl 0869.90039 · doi:10.1057/palgrave.jors.0470909
[10]Gupta, J. N. D.; Gupta, S. K.: Single facility scheduling with nonlinear processing times, Computers and industrial engineering 14, 387-393 (1988)
[11]Kunnatur, A. S.; Gupta, S. K.: Minimizing the makespan with late starts penalties added the processing times in a single facility scheduling problem, European journal of operational research 47, 56-64 (1990) · Zbl 0717.90034 · doi:10.1016/0377-2217(90)90089-T
[12]Browne, S.; Yechiali, U.: Scheduling deteriorating jobs on a single processor, Operations research 38, 495-498 (1990) · Zbl 0703.90051 · doi:10.1287/opre.38.3.495
[13]Alidaee, B.; Womer, N. K.: Scheduling with time dependent processing times: review and extensions, The journal of operational research society 50, No. 7, 711-720 (1999) · Zbl 1054.90542
[14]Gupta, J. N. D.; Gupta, S. K.: Single facility scheduling with nonlinear processing times, Computers and industrial engineering 14, 387-393 (1988)
[15]Voutsinas, G. T.; Pappis, C. P.: Scheduling jobs with values exponentially deteriorating over time, International journal of production economics 79, 163-169 (2002)
[16]Cheng, T. C. E.; Ding, Q.; Lin, B. M. T.: A concise survey on the scheduling problems with deteriorating processing times, European journal of operational research 152, 1-13 (2003)
[17]Wang, X.; Cheng, T. C. E.: Single-machine scheduling with deteriorating jobs and learning effects to minimize the makespan, European journal of operational research 178, No. 1, 57-70 (2007) · Zbl 1110.90045 · doi:10.1016/j.ejor.2006.01.017
[18]Wang, J. B.: Single-machine scheduling problems with the effects of learning and deterioration, Omega 35, No. 4, 397-402 (2007)
[19]M.D. Toksarı, E. Guner, Minimizing the earliness/tardiness costs on parallel machine with learning effects and deteriorating jobs: A mixed nonlinear integer programming approach, Advanced Manufacturing Technology, 2007 (in press)
[20]T.C.E. Cheng, Chin-Chia Wu, Wen-Chiung Lee, Some scheduling problems with deteriorating jobs and learning effects, Computers and Industrial Engineering, 2007 (in press)
[21]Townsend, W.: The single machine problem with quadratic penalty function of completion times: A branch-and-bound solution, Management science 24, 530-534 (1978) · Zbl 0371.90065 · doi:10.1287/mnsc.24.5.530