zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A due-date assignment problem with learning effect and deteriorating jobs. (English) Zbl 1185.90099
Summary: In this paper we consider a single-machine scheduling problem with the effects of learning and deterioration. In this model, job processing times are defined by functions of their starting times and positions in the sequence. The problem is to determine an optimal combination of the due-date and schedule so as to minimize the sum of earliness, tardiness and due-date. We show that the problem remains polynomially solvable under the proposed model.
90B35Scheduling theory, deterministic
90B80Discrete location and assignment
[1]Pinedo, M.: Scheduling theory, algorithms, and systems, (2002)
[2]Browne, S.; Yechiali, U.: Scheduling deteriorating jobs on a single processor, Oper. res. 38, 495-498 (1990) · Zbl 0703.90051 · doi:10.1287/opre.38.3.495
[3]Alidaee, B.; Womer, N. K.: Scheduling with time dependent processing times: review and extensions, J. oper. Res. soc. 50, 711-720 (1999) · Zbl 1054.90542
[4]Cheng, T. C. E.; Ding, Q.; Lin, B. M. T.: A concise survey of scheduling with time-dependent processing times, Eur. J. Oper. res. 152, 1-13 (2004) · Zbl 1030.90023 · doi:10.1016/S0377-2217(02)00909-8
[5]Cheng, T. C. E.; Kang, L.; Ng, C. T.: Due-date assignment and single machine scheduling with deteriorating jobs, J. oper. Res. soc. 55, 198-203 (2004) · Zbl 1095.90036 · doi:10.1057/palgrave.jors.2601681
[6]Cheng, T. C. E.; Kang, L.; Ng, C. T.: Single machine due-date scheduling of jobs with decreasing start-time dependent processing times, Int. trans. Oper. res. 12, 355-366 (2005) · Zbl 1131.90355 · doi:10.1111/j.1475-3995.2005.501_1.x
[7]W.-H. Kuo, D.-L. Yang, A note on due-date assignment and single-machine scheduling with deteriorating jobs, J. Oper. Res. Soc., 2007, doi:doi:10.1057/palgrave.jors.2602396.
[8]Biskup, D.: Single-machine scheduling with learning considerations, Eur. J. Oper. res. 115, 173-178 (1999) · Zbl 0946.90025 · doi:10.1016/S0377-2217(98)00246-X
[9]Cheng, T. C. E.; Wang, G.: Single machine scheduling with learning effect considerations, Ann. oper. Res. 98, 273-290 (2000) · Zbl 0967.68019 · doi:10.1023/A:1019216726076
[10]Mosheiov, G.: Scheduling problems with a learning effect, Eur. J. Oper. res. 132, 687-693 (2001) · Zbl 1017.90051 · doi:10.1016/S0377-2217(00)00175-2
[11]Eren, T.; Guner, E.: A bicriteria scheduling with a learning effect: total completion time and total tardiness, INFOR: inform. Syst. oper. Res. 45, 75-81 (2007)
[12]Eren, T.; Guner, E.: Minimizing total tardiness in a scheduling problem with a learning effect, Appl. math. Modell. 31, 1351-1361 (2007) · Zbl 1145.90021 · doi:10.1016/j.apm.2006.03.030
[13]T. Eren, A bicriteria parallel machine scheduling with a learning effect of setup and removal times, Appl. Mathe. Modell., 2008, doi:doi:10.1016/j.apm.2008.01.010.
[14]Biskup, D.: A state-of-the-art review on scheduling with learning effects, Eur. J. Oper. res. 118, 315-329 (2008) · Zbl 1129.90022 · doi:10.1016/j.ejor.2007.05.040
[15]Lee, W. -C.: A note on deteriorating jobs and learning in single-machine scheduling problems, Int. J. Business econom. 3, 83-89 (2004)
[16]Wang, J. -B.: A note on scheduling problems with learning effect and deteriorating jobs, Int. J. Syst. sci. 37, 827-833 (2006) · Zbl 1126.90347 · doi:10.1080/00207720600879260
[17]Wang, J. -B.: Single-machine scheduling problems with the effects of learning and deterioration, Omega 35, 397-402 (2007)
[18]Wang, J. -B.; Cheng, T. C. E.: Scheduling problems with the effects of deterioration and learning, Asia-Pacific J. Oper. res. 24, 245-261 (2007) · Zbl 1121.90066 · doi:10.1142/S021759590700122X
[19]Wang, X.; Cheng, T. C. E.: Single-machine scheduling with deteriorating jobs and learning effects to minimize the makespan, Eur. J. Oper. res. 178, 57-70 (2007) · Zbl 1110.90045 · doi:10.1016/j.ejor.2006.01.017
[20]Wang, J. -B.: Single machine scheduling with a time-dependent learning effect and deteriorating jobs, J. oper. Res. soc. 60, 583-586 (2009) · Zbl 1163.90515 · doi:10.1057/palgrave.jors.2602607
[21]J.-B. Wang, X. Huang, X.-Y. Wang, N. Yin, L.-Y. Wang, Learning effect and deteriorating jobs in the single machine scheduling problems, Appl. Mathe. Modell., 2009, doi:doi:10.1016/j.apm.2009.01.004. · Zbl 1205.90137 · doi:10.1016/j.apm.2009.01.004
[22]Nembhard, D. A.; Osothsilp, N.: Task complexity effects on between-individual learning/forgetting variability, Int. J. Ind. ergon. 29, 297-306 (2002)
[23]Panwalker, S. S.; Smith, M. L.; Seidmann, A.: Common due-date assignment to minimize total penalty for the one machine scheduling problem, Oper. res. 30, 391-399 (1982) · Zbl 0481.90042 · doi:10.1287/opre.30.2.391
[24]Baker, K. R.; Scudder, G. D.: Sequencing with earliness and tardiness penalties: a review, Oper. res. 38, 22-36 (1990) · Zbl 0699.90052 · doi:10.1287/opre.38.1.22
[25]Gordon, V. S.; Proth, J. M.; Chu, C. B.: A survey of the state-of- the-art of common due date assignment and scheduling research, Eur. J. Oper. res. 139, 1-25 (2002) · Zbl 1009.90054 · doi:10.1016/S0377-2217(01)00181-3
[26]Gordon, V. S.; Proth, J. M.; Chu, C. B.: Due date assignment and scheduling: SLK, TWK and other due date assignment models, Prod. plann. Contr. 13, 117-132 (2002)
[27]Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. discr. Math. 5, 287-326 (1979) · Zbl 0411.90044
[28]Hardy, G. H.; Littlewood, J. E.; Polya, G.: Inequalities, (1967)