zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. (English) Zbl 1185.92087
Summary: We consider the two species competitive delay plankton allelopathy stimulatory model system. We show the existence and uniqueness of the solutions of the deterministic model. Moreover, we study the persistence of the model and the stability properties of its equilibrium points. We illustrate the theoretical results by some numerical simulations.
MSC:
92D40Ecology
34K20Stability theory of functional-differential equations
34K60Qualitative investigation and simulation of models
65C20Models (numerical methods)
34K25Asymptotic theory of functional-differential equations
References:
[1]Edvarsen, B.; Paasche, E.: Bloom dynamics and physiology of primnesium and chrysochromulina, (1998)
[2]Anderson, D. M.: Toxic algae blooms and red tides: a global perspective, Red tides: biology, environmental science and toxicology, 11-21 (1989)
[3]Smayda, T.: Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic, Toxic marine phytoplankton, 29-40 (1990)
[4]Hallegraeff, G. M.: A review of harmful algae blooms and the apparent global increase, Phycologia 32, 79-99 (1993)
[5]Bandyopadhyay, M.; Saha, T.; Pal, R.: Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear anal. Hybrid syst. 2, 958-970 (2008) · Zbl 1218.34098 · doi:10.1016/j.nahs.2008.04.001
[6]Rice, E.: Allelopathy, (1984)
[7]Whittaker, R.; Feeny, P.: Allelochemics: chemical interactions between species, Science 171, 757-770 (1971)
[8]Berglund, H.: Stimulation of growth of two marine Green algae by organic substances excreted by enteromorpha linza in unialgal and axenic cultures, Physiol. plant. 22, 1069-1073 (2006)
[9]Pratt, R.: Influence of the size of the inoculum on the growth of chlorella vulgaris in freshly prepared culture medium, Amer. J. Bot. 27, 52-67 (1940)
[10]Rice, T. R.: Biotic influences affecting population growth of planktonic algae, US fish. Wild. serv. Fish. bull. 54, 227-242 (1954)
[11]Maynard-Smith, J.: Models in ecology, (1974)
[12]Chattophadyay, J.: Effect of toxic substances on a two species competitive system, Ecol. model. 84, 287-289 (1996)
[13]Mukhopadhyay, A.; Chattophadyay, J.; Tapasawi, P. K.: A delay differential equation model of plankton allelopathy, Math. biosci. 149, 167-189 (1998) · Zbl 0946.92031 · doi:10.1016/S0025-5564(98)00005-4
[14]Chen, F. D.; Li, Zhong; Chen, Xiaoxing; Jitka, L.: Dynamic behaviors of a delay differential equation model of plankton allelopathy, J. comput. Appl. math. 206, 733-754 (2007) · Zbl 1125.34066 · doi:10.1016/j.cam.2006.08.020
[15]Li, Zhong; Chen, F. D.: Extinction in two dimensional nonautonomous Lotka – Volterra systems with the effect of toxic substances, Appl. math. Comput. 182, 684-690 (2006) · Zbl 1113.92065 · doi:10.1016/j.amc.2006.04.034
[16]Li, Zhong; Chen, F. D.: Extinction in periodic competitive stage-structured Lotka – Volterra model with the effects of toxic substances, J. comput. Appl. math. 231, No. 1, 143-153 (2009) · Zbl 1165.92322 · doi:10.1016/j.cam.2009.02.004
[17]Liu, Z.; Wu, J.; Chen, Y.; Haque, M.: Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy, Nonlinear anal. Real world appl. 11, 432-445 (2010) · Zbl 1190.34084 · doi:10.1016/j.nonrwa.2008.11.017
[18]Fergola, P.; Beretta, E.; Cerasuolo, M.: Some new results on an allelopathic competition model with quorum sensing and delayed toxicant production, Nonlinear anal. Real world appl. 7, 1081-1095 (2006) · Zbl 1104.92059 · doi:10.1016/j.nonrwa.2005.10.001
[19]Chen, F. D.: On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay, J. comput. Appl. math. 180, 33-49 (2005) · Zbl 1061.92058 · doi:10.1016/j.cam.2004.10.001
[20]Gopalsamy, K.: Stability and oscillation in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[21]He, X.; Gopalsamy, K.: Persistence, attractivity, and delay in facultative mutualism, J. math. Anal. appl. 215, 154-173 (1997) · Zbl 0893.34036 · doi:10.1006/jmaa.1997.5632
[22]Zhang, Z.; Peng, J.; Zhang, J.: Analysis of a bacteria-immunity model with delay quorum sensing, J. math. Anal. appl. 340, 102-115 (2008) · Zbl 1127.92029 · doi:10.1016/j.jmaa.2007.08.027
[23]Alzabut, J. O.; Nieto, J. J.; Stamov, G. Tr.: Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis, Bound. value probl. 2009 (2009) · Zbl 1186.34116 · doi:10.1155/2009/127510