zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. (English) Zbl 1185.93006
Summary: An average-consensus control is considered for networks of continuous-time integrator agents under fixed and directed topologies. The control input of each agent can only use its local state and the states of its neighbors corrupted by white noises. To attenuate the measurement noises, time-varying consensus gains are introduced in the consensus protocol. By combining the tools of algebraic graph theory and stochastic analysis, the convergence of these kinds of protocols is analyzed. Firstly, for noise-free cases, necessary and sufficient conditions are given on the network topology and consensus gains to achieve average-consensus. Secondly, for the cases with measurement noises, necessary and sufficient conditions are given on the consensus gains to achieve asymptotic unbiased mean square average-consensus. It is shown that under the protocol designed, all agents’ states converge to a common Gaussian random variable, whose mathematical expectation is just the average of the initial states.
MSC:
93A14Decentralized systems
93B50Synthesis problems
93E03General theory of stochastic systems
93E10Estimation and detection in stochastic control