zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decomposition principle in model predictive control for linear systems with bounded disturbances. (English) Zbl 1185.93024
Summary: Considering a constrained linear system with bounded disturbances, this paper proposes a novel approach which aims at enlarging the domain of attraction by combining a set-based Model Predictive Control (MPC) approach with a decomposition principle. The idea of the paper is to extend the “pre-stabilizing” MPC, where the MPC control sequence is parameterized as perturbation to a given pre-stabilizing feedback gain, to the case where the pre-stabilizing feedback law is given as the linear combination of a set of feedback gains. This procedure leads to a relatively large terminal set and consequently a large domain of attraction even when using short prediction horizons. As time evolves, by minimizing the nominal performance index, the resulting controller reaches the desired optimal controller with a good asymptotic performance. Compared to the standard “pre-stabilizing” MPC, it combines the advantages of having a flexible choice of feedback gains, a large domain of attraction and a good asymptotic behavior.
93B11System structure simplification
93B40Computational methods in systems theory
93C05Linear control systems
93C73Perturbations in control systems