zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of maximal and minimal periodic solutions for first-order functional differential equations. (English) Zbl 1186.34092

Summary: One important question in population models is whether periodic solutions exist and whether they are bounded between minimal and maximal solutions. This paper deals with the existence of maximal and minimal periodic solutions for the periodic solutions of a first-order functional differential equation

y ' (t)=-a(t)y(t)+f(t,y(t-τ(t)))

by using the method of lower and upper solutions.

34K13Periodic solutions of functional differential equations
47N20Applications of operator theory to differential and integral equations
[1]Cheng, S. S.; Zhang, G.: Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differential equations 2001, No. 59, 1-8 (2001)
[2]Zhang, G.; Cheng, S. S.: Positive periodic solutions of nonautonomous functional differential equations depending on a parameter, Abstr. appl. Anal. 7, No. 5, 256-269 (2002) · Zbl 1007.34066 · doi:10.1155/S1085337502000878
[3]Jiang, D. Q.; Wei, J. J.: Existence of positive periodic solutions of nonautonomous functional differential equations, Chinese ann. Math. 20, No. 6, 715-720 (1999) · Zbl 0948.34046
[4]Kang, S. G.; Zhang, G.: Existence of nontrivial periodic solutions for first order functional differential equations, Appl. math. Lett. 18, 101-107 (2005) · Zbl 1075.34064 · doi:10.1016/j.aml.2004.07.018
[5]Kang, S. G.; Zhang, G.; Cheng, S. S.: Periodic solutions of a class of integral equations, Topol. methods nonlinear anal. 22, 245-252 (2003) · Zbl 1042.45002
[6]Shi, B.; Zhang, D. C.; Gai, M. J.: Theory and applications of differential equations, (2005)