zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On asymptotic stability of discrete-time non-autonomous delayed Hopfield neural networks. (English) Zbl 1186.39028
Summary: We obtain some sufficient conditions for determining the asymptotic stability of discrete-time non-autonomous delayed Hopfield neural networks by utilizing the Lyapunov functional method. An example is given to show the validity of the results.
MSC:
39A30Stability theory (difference equations)
92B20General theory of neural networks (mathematical biology)
References:
[1]Zhang, Q.; Wei, X. P.; Xu, J.: Global exponential stability for nonautonomous cellular neural networks with delays, Phys. lett. A 351, 153-160 (2006)
[2]Zhang, Q.; Wei, X. P.; Xu, J.: Stability of delayed cellular neural networks, Chaos solitons fractals 31, 514-520 (2007) · Zbl 1156.34349 · doi:10.1016/j.chaos.2005.10.003
[3]Zhang, Q.; Wei, X. P.; Xu, J.: Delay-dependent global stability condition for delayed Hopfield neural networks, Nonlinear anal. RWA 8, 997-1002 (2007) · Zbl 1138.34036 · doi:10.1016/j.nonrwa.2006.05.002
[4]Zhang, Q.; Wei, X. P.; Xu, J.: A new global stability result for delayed neural networks, Nonlinear anal. RWA 8, 1024-1028 (2007) · Zbl 1187.34104 · doi:10.1016/j.nonrwa.2006.06.002
[5]Arik, S.: An improved global stability result for delayed cellular neural networks, IEEE trans. Circuits syst. I 49, 1211-1214 (2002)
[6]Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks, IEEE trans. Neural networks 13, 1239-1242 (2002)
[7]Zhang, J.; Jin, X.: Global stability analysis in delayed Hopfield neural network models, Neural networks 13, 745-753 (2000)
[8]Mohamad, S.; Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. math. Comput. 135, 17-38 (2003) · Zbl 1030.34072 · doi:10.1016/S0096-3003(01)00299-5
[9]Liu, Y.; Wang, Z.; Serrano, A.; Liu, X.: Discrete-time recurrent neural networks with time-varying delays: exponential stability analysis, Phys. lett. A 362, 480-488 (2007)
[10]Zhang, Q.; Wei, X. P.; Xu, J.: A novel global exponential stability result for discrete-time cellular neural networks with variable delays, Internat. J. Neural syst. 16, 467-472 (2006)
[11]Chen, W. H.; Lu, X.; Liang, D. Y.: Global exponential stability for discrete-time neural networks with variable delays, Phys. lett. A 358, 186-198 (2006) · Zbl 1142.93393 · doi:10.1016/j.physleta.2006.05.014
[12]Liang, J.; Cao, J.; Lam, J.: Convergence of discrete-time recurrent neural networks with variable delay, Internat. J. Bifur. chaos 15, 581-595 (2005) · Zbl 1098.68107 · doi:10.1142/S0218127405012235
[13]Mohamad, S.; Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Math. comput. Simul. 53, 1-39 (2000)
[14]Chua, L. O.; Yang, L.: Cellular neural networks: theory and applications, IEEE trans. Circuits syst. I 35, 1257-1290 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600