zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differential mixed variational inequalities in finite dimensional spaces. (English) Zbl 1186.49006
Summary: We introduce and study a class of differential mixed variational inequalities in finite dimensional Euclidean spaces. Under various conditions, we obtain linear growth and bounded linear growth of the solution set for the mixed variational inequalities. Moreover, we present some conclusions which enrich the literature on the mixed variational inequalities and generalize the corresponding results of [J.-H. Pang and D. E. Stewart, Math. Program. 113, No. 2 (A), 345–424 (2008; Zbl 1139.58011)]. In particular we prove existence theorems for weak solutions of a differential mixed variational inequality in the weak sense of Carathéodory by using a result on differential inclusions involving an upper semicontinuous set-valued map with closed convex values. Also by employing the results from differential inclusions we establish a convergence result on Euler time-dependent procedure for solving initial-value differential mixed variational inequalities.
49J40Variational methods including variational inequalities
49J15Optimal control problems with ODE (existence)
34A60Differential inclusions
47J20Inequalities involving nonlinear operators
58E35Variational inequalities (global problems)