zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed point theorem for two non-self mappings in cone metric spaces. (English) Zbl 1186.65073
Summary: We extend a fixed point theorem of Imdad and Kumar, for a pair of non-self maps, to non-normal cone spaces.

MSC:
65J15Equations with nonlinear operators (numerical methods)
47H10Fixed point theorems for nonlinear operators on topological linear spaces
References:
[1]Huang, L. G.; Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 332, No. 2, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[2]Abbas, M.; Jungck, G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. Anal. appl. 341, 416-420 (2008) · Zbl 1147.54022 · doi:10.1016/j.jmaa.2007.09.070
[3]Ilić, D.; Rakočević, V.: Common fixed points for maps on cone metric space, J. math. Anal. appl. 341, 876-882 (2008) · Zbl 1156.54023 · doi:10.1016/j.jmaa.2007.10.065
[4]Ilić, D.; Rakočević, V.: Quasi-contraction on cone metric space, Appl. math. Lett. (2008)
[5]Rezapour, Sh.; Hamlbarani, R.: Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 345, 719-724 (2008) · Zbl 1145.54045 · doi:10.1016/j.jmaa.2008.04.049
[6]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[7]Sh. Rezapour, A review on topological properties of cone metric spaces, Analysis, Topology and Applications 2008, Vrnjačka Banja, Serbia, from May 30 to June 4, 2008
[8]Assad, N. A.: On a fixed point theorem of kannan in Banach spaces, Tamkang J. Math. 7, 91-94 (1976) · Zbl 0356.47027
[9]Assad, N. A.; Kirk, W. A.: Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43, No. 3, 553-562 (1972) · Zbl 0239.54032
[10]Rhoades, B. E.: A fixed point theorem for some non-self-mappings, Math. japonica 23, No. 4, 457-459 (1978) · Zbl 0396.47038
[11]Imdad, M.; Kumar, S.: Rhoades -type fixed -point theorems for a pair of nonself mappings, Comput. math. Appl. 46, 919-927 (2003) · Zbl 1065.47059 · doi:10.1016/S0898-1221(03)90153-2
[12]Lj.B. Ćirić, S. Radenović, M. Rajović, J.S. Ume, Common fixed point theorems for non-self mappings in metric spaces of hyperbolic type (submitted for publication) · Zbl 1184.54040 · doi:10.1016/j.cam.2009.11.042