zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Methods for solving singular boundary value problems using splines: a review. (English) Zbl 1186.65104
Summary: This paper surveys and reviews papers of spline solutions of singular boundary value problems. Among a number of numerical methods used to solve two-point singular boundary value problems, spline methods provide an efficient tool. Techniques collected in this paper include cubic splines, non-polynomial splines, parametric splines, B-splines and the two-parameter alternating group explicit method.
MSC:
65L10Boundary value problems for ODE (numerical methods)
65-02Research monographs (numerical analysis)
65L12Finite difference methods for ODE (numerical methods)
34B16Singular nonlinear boundary value problems for ODE
Software:
bvp4c
References:
[1]Abu-Zaid, I.T., El-Gebeily, M.A.: A finite difference method for the spectral approximation of a class of singular two-point boundary value problems. IMA J. Numer. Anal. 14, 545–562 (1994) · Zbl 0874.65059 · doi:10.1093/imanum/14.4.545
[2]Abu-Zaid, I.T., El-Gebeily, M.A.: On a finite difference method for singular two-point boundary value problems. IMA J. Numer. Anal. 18(2), 179–190 (1998) · Zbl 0913.65071 · doi:10.1093/imanum/18.2.179
[3]Agarwal, R.P.: Boundary Value Problems for High Ordinary Differential Equations. World Scientific, Singapore (1986)
[4]Ahlberg, J.H.: The Theory of Splines and Their Applications. Academic Press, San Diego (1967)
[5]Albasiny, E.L., Hoskins, W.D.: Cubic splines solutions to two-point boundary value problems. Comput. J. 12, 151–153 (1969) · Zbl 0185.41403 · doi:10.1093/comjnl/12.2.151
[6]Albasiny, E.L., Hoskins, W.D.: Increased accuracy cubic spline solutions to two-point boundary value problems. IMA J. Numer. Anal. 9(1), 47–55 (1972)
[7]Bellman, R., Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York (1965)
[8]Bickley, W.G.: Piecewise cubic interpolation and two point boundary problems. Comput. J. 11, 206–212 (1968)
[9]De Boor, C.: Practical Guide to Splines. Springer, Berlin (1978)
[10]Brabston, D.C., Keller, H.B.: A numerical method for singular two point boundary value problems. SIAM J. Numer. Anal. 14, 779–791 (1977) · Zbl 0373.65039 · doi:10.1137/0714054
[11]Caglar, H., Caglar, N., Elfaituri, K.: B-spline interpolation compared with finite element and finite volume methods which applied to two-point boundary value problems. Appl. Math. Comput. 175, 72–79 (2006) · Zbl 1088.65069 · doi:10.1016/j.amc.2005.07.019
[12]Caglar, H.N., Caglar, S.H., Twizell, E.H.: The numerical solution of third-order boundary-value problems with fourth-degree B-spline functions. Int. J. Comput. Math. 71, 373–381 (1999) · Zbl 0929.65048 · doi:10.1080/00207169908804816
[13]Caglar, N., Caglar, H.: B-spline solution of singular boundary value problems. Appl. Math. Comput. 182, 1509–1513 (2006) · Zbl 1107.65062 · doi:10.1016/j.amc.2006.05.035
[14]Chawla, M.M.: A fourth-order finite difference method based on uniform mesh for singular two-point boundary-value problems. J. Comput. Appl. Math. 17, 359–364 (1987) · Zbl 0614.65087 · doi:10.1016/0377-0427(87)90112-9
[15]Chawla, M.M., Katti, C.P.: A finite-difference method for a class of singular two-point boundary-value problems. IMA J. Numer. Anal. 4(4), 457–466 (1984) · Zbl 0571.65076 · doi:10.1093/imanum/4.4.457
[16]Chawla, M.M., Katti, C.P.: A uniform mesh finite difference method for a class of singular two-point boundary value problems. SIAM J. Numer. Anal. 22, 561–565 (1985) · Zbl 0578.65085 · doi:10.1137/0722033
[17]Chawla, M.M., Katti, C.P.: Finite difference methods and their convergence for a class of singular two-point boundary value problems. Numer. Math. 39, 341–350 (1982) · Zbl 0489.65055 · doi:10.1007/BF01407867
[18]Chawla, M.M., Mckee, S., Shaw, G.: Order h 2 method for a singular two-point boundary value problem. BIT 26, 326–381 (1986)
[19]Chawla, M.M., Subramanian, R.: A new fourth order cubic spline method for non-linear two-point boundary value problems. Int. J. Comput. Math. 22, 321–341 (1987) · Zbl 0656.65079 · doi:10.1080/00207168708803601
[20]Chawla, M.M., Subramanian, R., Sathi, H.L.: A fourth-order spline method for singular two-point boundary-value problems. J. Comput. Appl. Math. 21, 189–202 (1988) · Zbl 0634.65064 · doi:10.1016/0377-0427(88)90267-1
[21]Ciarlet, P.G., Natterer, F., Varga, R.S.: Numerical methods of high order accuracy for singular non-linear boundary value problems. Numer. Math. 15, 87–99 (1970) · Zbl 0211.19103 · doi:10.1007/BF02165374
[22]Cohen, A.M., Jones, D.E.: A note on the numerical solution of some singular second order differential equations. J. Inst. Math. Appl. 13, 379–384 (1974)
[23]Doede, E.J., Reddien, G.W.: Finite difference methods for singular two-point boundary value problems. SIAM J. Numer. Anal. 21, 300–313 (1984) · Zbl 0565.65043 · doi:10.1137/0721022
[24]Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole, Dublin (1980)
[25]El-Gebeily, M.A., Boumunir, A., Elgindi, M.B.: Existence and uniqueness of solutions of a class of two-point boundary value problems in one dimension. J. Comput. Appl. Math. 46, 345–355 (1992) · Zbl 0777.34019 · doi:10.1016/0377-0427(93)90031-6
[26]Fyfe, D.J.: The use of cubic splines in the solution of two-point boundary value problems. Comput. J. 12, 188–192 (1969) · Zbl 0185.41404 · doi:10.1093/comjnl/12.2.188
[27]Golub, G.H., Ortega, J.M.: Scientific Computing and Differential Equations. Academic Press, San Diego (1992)
[28]Guoqiang, H.: Correct solution of finite difference and spline approximation for a class of singular two-point boundary value problems. Math. Numer. Sin. 13, 187–192 (1991) (in Chinese)
[29]Guoqiang, H., : J. Comput. Appl. Math. 126, 145–157 (2000) · Zbl 0971.65066 · doi:10.1016/S0377-0427(99)00349-0
[30]Guoqiang, H., Jiong, W., Hayami, K., Yuesheng, X.: Correction method and extrapolation method for singular two-point boundary value problems. J. Comput. Math. 126, 145–157 (2000) · Zbl 0971.65066 · doi:10.1016/S0377-0427(99)00349-0
[31]Guoqiang, H.: Spline finite difference methods and their extrapolation for singular two-point boundary value problems. J. Comput. Math. 11, 289–296 (1993)
[32]Gustafsson, B.: A numerical method for solving singular boundary value problems. Numer. Math. 21, 328–344 (1973) · Zbl 0255.65032 · doi:10.1007/BF01436387
[33]De Hoog, F.R., Weiss, R.: Difference methods for boundary value problems with a singularity of the first kind. SIAM J. Numer. Anal. 13, 775–813 (1976) · Zbl 0372.65034 · doi:10.1137/0713063
[34]Iyengar, S.R.K., Jain, P.: Spline finite difference methods for singular two point boundary value problems. Numer. Math. 50, 363–376 (1987) · Zbl 0642.65062 · doi:10.1007/BF01390712
[35]Jamet, P.: On the convergence of finite difference approximations to one dimensional singular boundary value problems. Numer. Math. 14, 355–378 (1970) · Zbl 0179.22103 · doi:10.1007/BF02165591
[36]Kadalbajoo Mohan, K., Aggarwal Vivek, K.: Cubic spline for solving singular two-point boundary value problems. Appl. Math. Comput. 156, 249–259 (2004) · Zbl 1055.65090 · doi:10.1016/j.amc.2003.07.020
[37]Kadalbajoo Mohan, K., Aggarwal Vivek, K.: Numerical solution of singular boundary value problems via Chebychev polynomial and B-spline. Appl. Math. Comput. 160, 851–863 (2005)
[38]Kadalbajoo Mohan, K., Kumar, V.: B-spline method for a class of singular two-point boundary value problems using optimal grid. Appl. Math. Comput. 188, 1856–1869 (2007) · Zbl 1119.65067 · doi:10.1016/j.amc.2006.11.050
[39]Kadalbajoo Mohan, K., Raman, K.S.: Cubic spline and invariant imbedding for solving singular two-point boundary value problems. J. Math. Anal. Appl. 112, 22–35 (1985) · Zbl 0595.65089 · doi:10.1016/0022-247X(85)90274-4
[40]Kadalbajoo Mohan, K., Raman, K.S.: Numerical solution of singular boundary value problems by invariant imbedding. J. Comput. Phys. 55, 268–277 (1984) · Zbl 0547.65059 · doi:10.1016/0021-9991(84)90006-8
[41]Keller, H.B.: Numerical Methods for Two Point Boundary Value Problems. Blaisdell, London (1992)
[42]Kumar, M.: Higher order method for singular boundary value problems by using spline function. Appl. Math. Comput. 192(1), 175–179 (2007) · Zbl 1193.65127 · doi:10.1016/j.amc.2007.02.156
[43]Kumar, M.: A fourth-order spline finite difference method for singular two-point boundary value problems. Int. J. Comput. Math. 80(12), 1499–1504 (2003) · Zbl 1045.65066 · doi:10.1080/0020716031000148179
[44]Kumar, M.: A second order spline finite difference method for singular two-point boundary value problems. Appl. Math. Comput. 142, 283–290 (2003) · Zbl 1034.65061 · doi:10.1016/S0096-3003(02)00302-8
[45]Micula, G., Micula, S.: Handbook of Splines. Kluwer Academic, Dordrecht (1999)
[46]Mohanty, R.K., Evans, D.J.: A fourth order accurate cubic spline alternating group explicit method for non linear singular two-point boundary value problems. Int. J. Comput. Math. 80, 479–492 (2003) · Zbl 1020.65039 · doi:10.1080/0020716021000009219
[47]Mohanty, R.K., Evans, D.J., Khosla, N.: An O(h k 3 ) non-uniform mesh cubic spline TAGE method for non-linear singular two-point boundary value problems. Int. J. Comput. Math. 82(9), 1125–1139 (2005) · Zbl 1075.65102 · doi:10.1080/00207160500112977
[48]Mohanty, R.K., Sachdev, P.L., Jha, N.: An O(h 4) accurate cubic spline TAGE method for nonlinear singular two point boundary value problem. Appl. Math. Comput. 158, 853–868 (2004) · Zbl 1060.65080 · doi:10.1016/j.amc.2003.08.145
[49]Natterer, F.: A generalized spline method for singular boundary value problems of ordinary differential equations. Linear Algebra Appl. 7, 189–216 (1973) · Zbl 0268.65046 · doi:10.1016/0024-3795(73)90040-2
[50]Nelson, P.: Invariant embedding applied to homogeneous two point boundary value problems with a singularity of first kind. Appl. Math. Comput. 9, 93–110 (1981) · Zbl 0488.65034 · doi:10.1016/0096-3003(81)90009-6
[51]Pandey, R.K.: On the convergence of a spline method for singular two point boundary value problems arising in physiology. Int. J. Comput. Math. 79(3), 357–366 (2002) · Zbl 0995.65081 · doi:10.1080/00207160211935
[52]Prenter, P.M.: Splines and Variational Methods. Wiley, New York (1975)
[53]Rashidinia, J.: Applications of Spline to Numerical Solution of Differential Equations. M. Phil Dissertation, AMU, India (1990)
[54]Rashidinia, J., Mahmoodi, Z., Ghasemi, M.: Parametric spline method for a class of singular two-point boundary value problems. Appl. Math. Comput. 188, 58–63 (2007) · Zbl 1114.65341 · doi:10.1016/j.amc.2006.09.084
[55]Rashidinia, J., Mohammadi, R., Jalilian, R.: The numerical solution of non-linear singular boundary value problems arising in physiology. Appl. Math. Comput. 185, 360–367 (2007) · Zbl 1107.65334 · doi:10.1016/j.amc.2006.06.104
[56]Ravi Kanth, A.S.V., Bhattacharya, V.: Cubic spline for a class of non-linear singular boundary value problems arising in physiology. Appl. Math. Comput. 74, 768–774 (2006) · Zbl 1089.65075 · doi:10.1016/j.amc.2005.05.022
[57]Ravi Kanth, A.S.V.: Cubic spline polynomial for non-linear singular two-point boundary value problems. Appl. Math. Comput. 189(2), 2017–2022 (2007) · Zbl 1122.65376 · doi:10.1016/j.amc.2007.01.002
[58]Ravi Kanth, A.S.V., Reddy, Y.N.: Cubic spline for a class of singular two-point boundary value problems. Appl. Math. Comput. 170, 733–740 (2005) · Zbl 1103.65086 · doi:10.1016/j.amc.2004.12.049
[59]Reddien, G.W.: Projection methods and singular two point boundary value problems. Numer. Math. 21, 193–205 (1973) · Zbl 0281.65048 · doi:10.1007/BF01436623
[60]Reddien, G.W., Schumaker, L.L.: On a collocation method for singular two-point boundary value problems. Numer. Math. 21, 193–205 (1976) · Zbl 0281.65048 · doi:10.1007/BF01436623
[61]Reddien, G.W., Schumaker, L.L.: On the collocation method for singular two point boundary value problems. Numer. Math. 25, 427–432 (1976) · Zbl 0372.65033 · doi:10.1007/BF01396339
[62]Regan, D.O.: Theory of Singular Boundary Value Problems. World Scientific, Singapore (1994)
[63]Rentrop, P.: A Taylor series method for the numerical solution of two point boundary value problems. Numer. Math. 31, 359–375 (1979) · Zbl 0421.65051 · doi:10.1007/BF01404566
[64]Russell, R.D., Shampine, L.F.: Numerical methods for singular boundary value problems. SIAM J. Numer. Anal. 12, 13–36 (1975) · Zbl 0294.65047 · doi:10.1137/0712002
[65]Schreiber, R.: Finite element methods of high order accuracy for singular two-point boundary value problems with non smooth solutions. SIAM J. Numer. Anal. 17, 547–566 (1980) · Zbl 0474.65062 · doi:10.1137/0717047
[66]Shampine, L.F., Reichelt, M.W., Kierzenka, J.: Solving boundary value problems for ODE in matlab using bvp4c. Available on ftp://ftp.mathworks.com/pub/doc/papers/bvp
[67]Shampine, L.F.: Singular boundary value problems for odes. Available on ftp://ftp.mathworks.com/pub/doc/papers/bvp