zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. (English) Zbl 1186.65160
Summary: Periodic harmonic wavelets (PHW) are applied as basis functions in solution of the Fredholm integral equations of the second kind. Two equations are solved in order to find out advantages and disadvantages of such choice of the basis functions. It is proved that PHW satisfy the properties of the multiresolution analysis.
MSC:
65R20Integral equations (numerical methods)
45B05Fredholm integral equations
65T60Wavelets (numerical methods)
References:
[1]Smithies, F.: Integral equations, (2009)
[2]Daubechies, I.: Ten lectures on wavelets, (1992) · Zbl 0776.42018
[3]Wojtaszczyk, P.: A mathematical introduction to wavelets, (1997)
[4]Muniandy, S. V.; Moroz, I. M.: Galerkin modeling of the Burgers equation using harmonic wavelets, Phys. lett. A 235, 352-356 (1997) · Zbl 1044.65511 · doi:10.1016/S0375-9601(97)00639-7
[5]Newland, D. E.: Harmonic wavelet analysis, Royal soc. 443, 203-225 (1993) · Zbl 0793.42020 · doi:10.1098/rspa.1993.0140
[6]Newland, D. E.: An introduction to random vibrations. Spectral and wavelet analysis, (1993)
[7]Cattani, C.; Rushchitsky, J. J.: Wavelet and wave analysis as applied to materials with micro- or nanostructure, Series on advances in mathematics for applied sciences 74 (2007)
[8]Newland, D. E.: Harmonic wavelets in vibrations and acoustics, Royal soc. 357, 2607-2625 (1999) · Zbl 0952.74035 · doi:10.1098/rsta.1999.0451
[9]Cattani, C.: Connection coefficients of Shannon wavelets, Math. model. Anal. 11, No. 2, 1-16 (2006)
[10]Mahmoudi, Y.: Wavelet Galerkin method for numerical solution of nonlinear integral equation, Appl. math. Comput. 167, 1119-1129 (2005) · Zbl 1082.65596 · doi:10.1016/j.amc.2004.08.004
[11]Lepik, U.; Tamme, E.: Solution of nonlinear Fredholm integral equations via the Haar wavelet method, Proc. estonian acad. Sci. phys. Math. 56, No. 1, 17-27 (2007) · Zbl 1149.65102
[12]Morita, T.: Expansion in harmonic wavelets of a periodic function, Interdiscipl. inform. Sci. 3, No. 1, 5-12 (1997) · Zbl 0919.42028 · doi:10.4036/iis.1997.5
[13]D.E. Newland, Practical signal analysis: do wavelets make any difference? in: Proceedings of 1997 Design Engineering Technical Conferences, September 14 – 17, 1997, Sacramento, California.