zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
General diffuse-interface theories and an approach to predictive tumor growth modeling. (English) Zbl 1186.92024

Summary: While a large and growing literature exists on mathematical and computational models of tumor growth, to date tumor growth models are largely qualitative in nature, and fall far short of being able to provide predictive results important in life-and-death decisions. This is largely due to the enormous complexity of evolving biological and chemical processes in living tissues and the complex interactions of many cellular and vascular constituents in living organisms. Several new technologies have emerged, however, which could lead to significant progress in this important area: (i) the development of so-called phase-field, or diffuse-interface models, which can be developed using continuum mixture theory, and which provide a general framework for modeling the action of multiple interacting constituents. These are based on generalizations of the J. W. Cahn and J. E. Hilliard models [J. Chem. Phys. 28, 258–267 (1958)] for spinodal decomposition, and have been used recently in certain tumor growth theories; (ii) the emergence of predictive computational methods based on the use of statistical methods for calibration, model validation, and uncertainty quantification; (iii) advances in imaging, experimental cell biology, and other medical observational methodologies; and (iv) the advent of petascale computing that makes possible the resolution of features at scales and at speeds that were unattainable only a short time in the past.

We develop a general phenomenological thermomechanical theory of mixtures that employs phase-field or diffuse interface models of surface energies and reactions and which provides a framework for generalizing existing theories of the types that are in use in tumor growth modeling. In principle, the framework provides for the effects of M solid constituents, which may undergo large deformations, and for the effect of N-M fluid constituents, which could include highly nonlinear, non-Newtonian fluids. We then describe several special cases which have the potential of providing acceptable models of tumor growth. We then describe the beginning steps of the development of Bayesian methods for statistical calibration, model validation, and uncertainty quantification, which, with further work, could produce a truly predictive tool for studying tumor growth. In particular, we outline the processes of statistical calibration and validation that can be employed to determine if tumor growth models, drawn from the broad class of models developed here, are valid for prediction of key quantities of interest critical to making decisions on various medical protocols. We also describe how uncertainties in such key quantities of interest can be quantified in ways that can be used to establish confidence in predicted outcomes.

MSC:
92C50Medical applications of mathematical biology
92C05Biophysics
62F15Bayesian inference