zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalization of the Moore-Penrose inverse related to matrix subspaces of n×m . (English) Zbl 1187.15008
Let A m×n and let S be a linear subspace of n×m . The authors define the left S-Moore-Penrose inverse of A to be the minimum Frobenius norm solution to the matrix minimization problem min MS MA-I n F , where I n denotes the identity matrix of order n and · F stands for the matrix Frobenius norm, and similarly define the right S-Moore-Penrose inverse of A. This is clearly a natural generalization of the classical Moore-Penrose inverse. They provide an explicit expression based on the singular value decomposition of the matrix A as well as an alternative expression for the full rank case, in terms of the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.
15A09Matrix inversion, generalized inverses
65F08Preconditioners for iterative methods
[1]Moore, E. H.: On the reciprocal of the general algebraic matrix, Bull. am. Math. soc. 26, 394-395 (1920)
[2]Penrose, R.: A generalized inverse for matrices, Proc. Cambridge philos. Soc. 51, 406-413 (1955) · Zbl 0065.24603
[3]Ben-Israel, A.; Greville, T. N. E.: Generalized inverses: theory and applications, (2003)
[4]Baksalary, J. K.; Baksalary, O. M.: Particular formulae for the Moore – Penrose inverse of a columnwise partitioned matrix, Linear algebra appl. 421, 16-23 (2007) · Zbl 1116.15003 · doi:10.1016/j.laa.2006.03.031
[5]Britz, T.; Olesky, D. D.; Den Driessche, P. Van: The Moore – Penrose inverse of matrices with an acyclic bipartite graph, Linear algebra appl. 390, 47-60 (2004) · Zbl 1059.15012 · doi:10.1016/j.laa.2004.04.007
[6]Rakha, M. A.: On the Moore – Penrose generalized inverse matrix, Appl. math. Comput. 158, 185-200 (2004) · Zbl 1064.65031 · doi:10.1016/j.amc.2003.09.004
[7]Tian, Y.: Using rank formulas to characterize equalities for Moore – Penrose inverses of matrix products, Appl. math. Comput. 147, 581-600 (2004) · Zbl 1037.15003 · doi:10.1016/S0096-3003(02)00796-8
[8]Tian, Y.: Approximation and continuity of Moore – Penrose inverses of orthogonal row block matrices, Appl. math. Comput. (2008)
[9]Toutounian, F.; Ataei, A.: A new method for computing Moore – Penrose inverse matrices, J. comput. Appl. math. (2008)
[10]Zhang, X.; Cai, J.; Wei, Y.: Interval iterative methods for computing Moore – Penrose inverse, Appl. math. Comput. 183, 522-532 (2006) · Zbl 1115.65039 · doi:10.1016/j.amc.2006.05.098
[11]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[12]Griewank, A.: A short proof of the dennis – schnabel theorem, Bit 22, 252-256 (1982) · Zbl 0484.65028 · doi:10.1007/BF01944480
[13]Montero, G.; González, L.; Flórez, E.; García, M. D.; Suárez, A.: Approximate inverse computation using Frobenius inner product, Numer. linear algebra appl. 9, 239-247 (2002) · Zbl 1071.65534 · doi:10.1002/nla.269
[14]Axelsson, O.: Iterative solution methods, (1994)
[15]Greenbaum, A.: Iterative methods for solving linear systems, Frontiers appl. Math. 17 (1997) · Zbl 0883.65022
[16]Saad, Y.: Iterative methods for sparse linear systems, (1996) · Zbl 1031.65047
[17]Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985)
[18]González, L.: Orthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioning, SIAM rev. 48, 66-75 (2006) · Zbl 1095.65042 · doi:10.1137/S0036144504431905
[19]Penrose, R.: On best approximate solutions of linear matrix equations, Proc. Cambridge philos. Soc. 52, 17-19 (1956) · Zbl 0070.12501
[20]Ben-Israel, A.: The Moore of the Moore – Penrose inverse, Electron. J. Linear algebra 9, 150-157 (2002) · Zbl 1024.01012 · doi:emis:journals/ELA/ela-articles/9.html