zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On positive solutions of a nonlocal fractional boundary value problem. (English) Zbl 1187.34026

Summary: We investigate the existence and uniqueness of positive solutions for a nonlocal boundary value problem

D 0+ α u(t)+f(t,u(t))=0,0<t<1,u(0)=0,βu(η)=u(1),

where 1<α2, 0<βη α-1 <1·0<η<1, D 0+ α is the standard Riemann-Liouville differentiation. The function is continuous on [0,1]×[0,).

Firstly, we give Green’s function and prove its positivity; secondly, the uniqueness of positive solution is obtained by the use of contraction map principle and some Lipschitz-type conditions; thirdly, by means of the fixed point index theory, we obtain some existence results of positive solution. The proofs are based upon the reduction of the problem considered to the equivalent Fredholm integral equation of second kind.

34B10Nonlocal and multipoint boundary value problems for ODE
34A08Fractional differential equations
34B18Positive solutions of nonlinear boundary value problems for ODE