zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Normal forms for NFDEs with parameters and application to the lossless transmission line. (English) Zbl 1187.34094
Summary: A method for the computation of normal forms for neutral functional differential equations (NFDEs) with parameters is developed by considering an extension of the phase space based on the method of computing normal forms for FDEs with parameters previously introduced by Faria. The Hopf bifurcation of the differential difference equation is considered as an example of a circuit involving a lossless transmission line. The direction and stability of the bifurcating periodic solutions are also determined. Finally, numerical simulations are carried out to support the analytic results.
34K17Transformation and reduction of functional-differential equations and systems; normal forms
34K40Neutral functional-differential equations
34K18Bifurcation theory of functional differential equations
34K60Qualitative investigation and simulation of models
[1]Brayton, R.K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type. Quart. Appl. Math. 24, 215–224 (1966)
[2]Brayton, R.K.: Nonlinear oscillations in a distributed network. Quart. J. Appl. Math. 24, 289–301 (1967)
[3]Brumley, W.E.: On the asymptotic behavior of solutions of differential-difference equations of neutral type. J. Differ. Equ. 7, 175–188 (1970) · Zbl 0215.15405 · doi:10.1016/0022-0396(70)90131-2
[4]Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)
[5]Cao, J., He, G.: Periodic solutions for higher order neutral differential equations with several delays. Comput. Math. Appl. 48, 1491–1503 (2004) · Zbl 1091.34038 · doi:10.1016/j.camwa.2004.07.007
[6]Chow, S.-N., Lu, K.: C k center unstable manifolds. Proc. Roy. Soc. Edinb. A 108, 303–320 (1988)
[7]Chow, S.-N., Mallet-Paret, J.: Integral averaging and bifurcation. J. Differ. Equ. 26, 112–159 (1977) · Zbl 0367.34033 · doi:10.1016/0022-0396(77)90101-2
[8]Cruz, M.A., Hale, J.K.: Stability of functional differential equations of neutral type. J. Differ. Equ. 7, 334–355 (1970) · Zbl 0191.38901 · doi:10.1016/0022-0396(70)90114-2
[9]Faria, T., Magalhaes, L.: Normal forms for retarded functional differential equation and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122, 201–224 (1995) · Zbl 0836.34069 · doi:10.1006/jdeq.1995.1145
[10]Faria, T., Magalhaes, L.: Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995) · Zbl 0836.34068 · doi:10.1006/jdeq.1995.1144
[11]Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)
[12]Hale, J.K., Weedermann, M.: On perturbations of delay-differential equations with periodic orbits. J. Differ. Equ. 197, 219–246 (2004) · Zbl 1071.34074 · doi:10.1016/S0022-0396(02)00063-3
[13]Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
[14]Hausrath, R.: Stability in the critical case of pure imaginary roots for neutral functional differential equations. J. Differ. Equ. 13, 329–397 (1973) · Zbl 0261.34046 · doi:10.1016/0022-0396(73)90021-1
[15]Krawcewicz, W., Ma, S., Wu, J.: Multiple slowly oscillating periodic solutions in coupled lossless transmission lines. Nonlinear Anal. 5, 309–354 (2004) · Zbl 1144.34365 · doi:10.1016/S1468-1218(03)00040-3
[16]Krawcewicz, W., Wu, J., Xia, H.: Global Hopf bifurcation theory for condensing fields and neutral equations with applications to lossless transmission problems. Can. Appl. Math. Quart. 1(2), 167–219 (1993)
[17]Lopes, O.: Stability and forced oscillations. J. Math. Anal. Appl. 55, 686–698 (1976) · Zbl 0347.34058 · doi:10.1016/0022-247X(76)90075-5
[18]Qu, Y., Wei, J.: Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure. Nonlinear Dyn. 49, 285–294 (2007) · Zbl 1176.92056 · doi:10.1007/s11071-006-9133-x
[19]Weedermann, M.: Normal forms for neutral functional differential equations. In: Topics in Functional Differential and Difference Equations, vol. 29, pp. 361–368. American Mathematical Society, Providence (2001)
[20]Weedermann, M.: Hopf bifurcation calculations for scalar delay differential equations. Nonlinearity 19, 2091–2102 (2006) · Zbl 1116.34057 · doi:10.1088/0951-7715/19/9/005
[21]Wei, J., Ruan, S.: Stability and global Hopf bifurcation for neutral differential quations. Acta Math. Sin. 45(1), 94–104 (2002)
[22]Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)
[23]Yu, W., Cao, J.: Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay. Nonlinear Anal. 62, 141–165 (2005) · Zbl 1138.34348 · doi:10.1016/j.na.2005.03.017