zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations. (English) Zbl 1187.34098
By the generalized Lyapunov method and linear matrix inequality technique, the global robust stability of delayed neural networks with discontinuous and not necessarily bounded neuron activations is investigated. Two examples are presented to illustrate the effectiveness of the obtained results.
MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Li, X.; Huang, L.; Wu, J.: Further results on the stability of delayed cellular neural networks, IEEE trans. Circuits syst. I 50, 1239-1242 (2003)
[2]Cao, J.; Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays, IEEE trans. Circuits syst. I 50, 34-44 (2003)
[3]Chen, T.: Global exponential stability of delayed Hopfield neural networks, Neural networks 14, 977-980 (2001)
[4]Lu, W.; Rong, L.; Chen, T.: Global convergence of delayed networks systems, Int. J. Neural networks 13, 193-204 (2003)
[5]Liao, X.; Wang, J.: Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays, IEEE trans. Circuits syst. I 50, 268-285 (2003)
[6]Lu, H.: On stability of nonlinear continuous-time neural networks with delay, IEEE trans. Neural networks 13, 1135-1143 (2000)
[7]Li, X.; Huang, L.; Zhu, H.: Global stability of cellular neural networks with constant and variable delays, Nonlinear anal. 53, 319-333 (2003) · Zbl 1011.92006 · doi:10.1016/S0362-546X(02)00176-1
[8]Singh, V.: Novel LMI condition for global robust stability of delayed neural networks, Chaos solitons fract. 34, 503-508 (2007) · Zbl 1134.93393 · doi:10.1016/j.chaos.2006.03.034
[9]Park, J. H.: Robust stability of bidirectional associative memory neural networks with time delays, Phys. lett. A 249, 494-499 (2006)
[10]Ozcan, N.; Arik, S.: An analysis of global robust stability of neural networks with discrete time delays, Phys. lett. A 359, 445-450 (2006) · Zbl 1193.92004 · doi:10.1016/j.physleta.2006.06.055
[11]Singh, V.: New global robust stability results for delayed cellular neural networks based on norm-bounded uncertainties, Chaos solitons fract. 30, 1165-1171 (2006) · Zbl 1142.34353 · doi:10.1016/j.chaos.2005.08.183
[12]Lou, X.; Cui, B.: On the global robust asymptotic stability of BAM neural networks with time-varying delays, Neurocomputing 70, 273-279 (2006)
[13]Cao, J.; Huang, D. S.; Qu, Y.: Global robust stability of delayed recurrent neural networks, Chaos solitions fract. 23, 221-229 (2005) · Zbl 1075.68070 · doi:10.1016/j.chaos.2004.04.002
[14]Xu, S. Y.; Lam, J.; Ho, D. W. C.; Zou, Y.: Global robust exponential stability analysis for interval recurrent neural networks, Phys. lett. A 325, 124-133 (2004) · Zbl 1161.93335 · doi:10.1016/j.physleta.2004.03.038
[15]Wang, Y.; Zuo, Y.; Huang, L.; Li, C.: Global robust stability of delayed neural networks with discontinuous activation functions, IET control theory appl. 7, 543-553 (2008)
[16]Zuo, Y.; Wang, Y.; Huang, L.: Robust stability criterion for delayed neural networks with discontinuous activation functions, Neural process. Lett. 29, 29-44 (2009)
[17]Arik, S.: Global robust stability analysis of delayed neural networks with discrete time delays, Chaos solitons fract. 34, 503-508 (2007)
[18]Song, Q.; Cao, J.: Global robust stability of interval neural networks with multiple time-varying delays, Math. comput. Simul. 74, 38-46 (2007) · Zbl 1119.34054 · doi:10.1016/j.matcom.2006.06.030
[19]Park, J. H.: Further note on global exponential stability of uncertain cellular neural networks with variable delays, Appl. math. Comput. 188, 850-854 (2007) · Zbl 1126.34376 · doi:10.1016/j.amc.2006.10.036
[20]Song, Q.; Cao, J.: Robust stability in Cohen – Grossberg neural network with both time-varying and distributed delays, Neural process. Lett. 27, 179-196 (2008)
[21]Forti, M.; Nistri, P.: Global convergence of neural networks with discontinuous neuron activations, IEEE trans. Circuits syst. I 50, 1421-1435 (2003)
[22]Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-state neurons, Proc. nat. Acad. sci. 81, 3088-3092 (1984)
[23]Forti, M.; Nistri, P.; Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain, IEEE trans. Neural networks 16, 1449-1463 (2005)
[24]Filippov, A. F.: Differential equations with discontinuous right-hand side. Mathematics and its applications (Soviet series), (1988)
[25]Aubin, J. P.; Cellina, A.: Differential inclusions, (1984)
[26]Hale, J. K.: Theory of functional differential equations, (1977)
[27]Dugundji, J.; Granas, A.: Fixed point theory, Monografie matematyczne 123 (1982)
[28]Clarke, F. H.: Optimization and non-smooth analysis, (1983) · Zbl 0582.49001