zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Note on the persistent property of a feedback control system with delays. (English) Zbl 1187.34106

Summary: By developing some new analysis techniques, we show that the following feedback control system of differential equations with delays is permanent.

dN(t) dt=r(t)N(t)1-N 2 (t-τ 1 (t)) k 2 (t)-c(t)u(t-τ 2 (t)),du(t) dt=-a(t)u(t)+b(t)N(t-τ 1 (t)),

where τ 1 ,τ 2 ,a,b,c,r,kC(,(0,+)) are ω-periodic functions, which means that feedback control variable has no influence on the persistent property of the above system.

34K25Asymptotic theory of functional-differential equations
93B52Feedback control
[1]Hale, J.: Theory of functional differential equations, (1977)
[2]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[3]Fan, G. H.; Li, Y. K.; Qin, M. C.: The existence of positive periodic solutions for periodic feedback control systems with delays, Zeitschrift für angewandte Mathematik und mechanik 84, No. 6, 425-430 (2004)
[4]Gaines, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations, (1977)
[5]Chen, F. D.; Liao, X. Y.; Huang, Z. K.: The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls, Applied mathematics and computation 181, No. 2, 803-815 (2006) · Zbl 1102.93021 · doi:10.1016/j.amc.2006.02.007
[6]Chen, F. D.: Global stability of a single species model with feedback control and distributed time delay, Applied mathematics and computation 178, No. 2, 474-479 (2006) · Zbl 1101.92035 · doi:10.1016/j.amc.2005.11.062
[7]Fan, Y. H.; Wang, L. L.: Permanence for a discrete model with feedback control and delay, Discrete dynamics in nature and society 2008 (2008) · Zbl 1149.39003 · doi:10.1155/2008/945109
[8]Nie, L. F.; Peng, J. G.; Teng, Z. D.: Permanence and stability in multi-species non-autonomous Lotka–Volterra competitive systems with delays and feedback controls, Mathematical and computer modelling 49, No. 1–2, 295-306 (2009) · Zbl 1165.34373 · doi:10.1016/j.mcm.2008.05.004
[9]Chen, F. D.; Chen, X. X.; Shi, J. L.: Dynamic behavior of a nonlinear single species diffusive system, Advances in complex systems 8, No. 4, 399-417 (2005) · Zbl 1163.34360 · doi:10.1142/S021952590500049X
[10]Chen, F. D.; Shi, J. L.: Periodicity in a logistic type system with several delays, Computer and mathematics with applications 48, No. 1–2, 35-44 (2004) · Zbl 1061.34050 · doi:10.1016/j.camwa.2004.02.001
[11]Chen, F. D.; Sun, D. X.; Shi, J. L.: Periodicity in a food-limited population model with toxicants and state dependent delays, Journal of mathematical analysis and applications 288, No. 1, 132-142 (2003) · Zbl 1087.34045 · doi:10.1016/S0022-247X(03)00586-9
[12]Chen, F. D.; Xie, X. D.: Permanence and extinction in nonlinear single and multiple species system with diffusion, Applied mathematics and computation 177, No. 1, 410-426 (2006) · Zbl 1090.92046 · doi:10.1016/j.amc.2005.11.019
[13]Li, Y.; Liu, P.; Zhu, L.: Positive periodic solutions of a class of functional differential systems with feedback controls, Nonlinear analysis 57, 655-666 (2004) · Zbl 1064.34049 · doi:10.1016/j.na.2004.03.006