zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations. (English) Zbl 1187.37124

The stability criteria for the following neutral systems with mixed time-varying delays and nonlinear perturbations are discussed

x ˙(t)=Ax(t)+Bx(t-h(t))+Cx ˙(t-τ(t))+f 1 (x(t),t)+f 2 (x(t-h(t)),t)+f 3 (x ˙(t-τ(t)),t),
x(θ)=φ(θ),x ˙(θ)=φ(θ),θ[-max(h,τ),0]·

The authors are particularly interested in nonlinear time-varying parameter perturbations and norm-bounded uncertainties. Based on Lyapunov functional approach and linear matrix inequalities, the authors derive the less conservative delay-dependent stability conditions. The corresponding asymptotic stability theorems are formulated. The proposed criteria are both neutral-delay dependent and discrete dependent, and at the same time, are dependent on the derivative of the discrete and neutral delays. The numerical examples demonstrating the effectiveness of the proposed method are also discussed.

MSC:
37N25Dynamical systems in biology
92B20General theory of neural networks (mathematical biology)
References:
[1]Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[2]Brayton, R. K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type, Q. appl. Math. 24, 215-224 (1966) · Zbl 0143.30701
[3]Niculescu, S. I.: Delay effects on stability: A robust control approach, (2001)
[4]He, Y.; Wang, Q. G.; Lin, C.; Wu, M.: Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems, Internat. J. Robust nonlinear control 15, No. 18, 923-933 (2005) · Zbl 1124.34049 · doi:10.1002/rnc.1039
[5]Wu, M.; He, Y.; She, J. H.: New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE trans. Automat. control 49, No. 12, 2266-2271 (2004)
[6]Fridman, E.; Shaked, U.: Delay-dependent stability and H control: constant and time-varying delays, Internat. J. Control 76, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[7]Fridman, E.; Shaked, U.: An improved delay-dependent H filtering of linear neutral systems, IEEE trans. Signal process. 52, No. 3, 668-673 (2004)
[8]Liu, X. G.; Wu, M.; Martin, R.; Tang, M. L.: Delay-dependent stability analysis for uncertain neutral systems with time-varying delays, Math. comput. Simulation 75, 15-27 (2007) · Zbl 1128.34048 · doi:10.1016/j.matcom.2006.08.006
[9]Zhao, Z.; Wang, W.; Yang, B.: Delay and its time-derivative dependent robust stability of neutral control system, Appl. math. Comput. 187, 1326-1332 (2007) · Zbl 1114.93076 · doi:10.1016/j.amc.2006.09.042
[10]Kwon, O. M.; Park, J. H.; Lee, S. M.: On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Appl. math. Comput. 197, 864-873 (2008) · Zbl 1144.34052 · doi:10.1016/j.amc.2007.08.048
[11]Park, J. H.: Novel robust stability criterion for a class of neutral systems with mixed delays and nonlinear perturbations, Appl. math. Comput. 161, 413-421 (2005) · Zbl 1065.34076 · doi:10.1016/j.amc.2003.12.036
[12]Zou, Z.; Wang, Y.: New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations, IEE proc., control theory appl. 153, No. 5, 623-626 (2006)
[13]Han, Q. L.: On robust stability for a class of linear systems with time varying delay and nonlinear perturbations, Comput. math. Appl. 47, 1201-1209 (2004) · Zbl 1154.93408 · doi:10.1016/S0898-1221(04)90114-9
[14]Han, Q. L.; Yu, L.: Robust stability of linear neutral systems with nonlinear parameter perturbations, IEE proc., control theory appl. 151, No. 5, 539-546 (2004)
[15]Zhang, W. A.; Yu, L.: Delay-dependent robust stability of neutral systems with mixed delays and nonlinear perturbations, Acta automat. Sinica 33, No. 8, 863-866 (2007)
[16]Goubet-Batholomeus, A.; Dambrine, M.; Richard, J. P.: Stability of perturbed systems with time-varying delays, Systems control lett. 31, 155-163 (1997) · Zbl 0901.93047 · doi:10.1016/S0167-6911(97)00032-7
[17]Cao, Y. Y.; Lam, J.: Computation of robust stability bounds for time-delay systems with nonlinear time-varying perturbations, Internat. J. Systems sci. 31, 359-365 (2000) · Zbl 1080.93519 · doi:10.1080/002077200291190
[18]Chen, Y.; Xue, A. K.; Lu, R. Q.; Zhou, S. S.: On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations, Nonlinear anal. 68, 2464-2470 (2008) · Zbl 1147.34352 · doi:10.1016/j.na.2007.01.070
[19]Kim, J. H.: Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, IEEE trans. Automat. control 46, 789-792 (2001) · Zbl 1008.93056 · doi:10.1109/9.920802
[20]Zhang, J. H.; Peng, S.; Qiu, J. Q.: Robust stability criteria for uncertain neutral system with time delay and nonlinear uncertainties, Chaos solitons fractals 38, No. 1, 160-167 (2008) · Zbl 1142.93402 · doi:10.1016/j.chaos.2006.10.068
[21]C.C. Shen, S.M. Zhong, New delay-dependent robust stability criterion for uncertain neutral systems with time-varying delay and nonlinear uncertainties, Chaos Solitons Fractals (in press) · Zbl 1198.93164 · doi:10.1016/j.chaos.2007.10.020
[22]Yang, B.; Wang, J. C.; Pan, X. J.; Zhong, C. Q.: Delay-dependent criteria for robust stability of linear neutral systems with time-varying delay and nonlinear perturbations, Internat. J. Systems sci. 38, No. 6, 511-518 (2007) · Zbl 1126.93046 · doi:10.1080/00207720701393302
[23]He, Y.; Wang, Q. G.; Xie, L. H.; Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE trans. Automat. control 52, No. 2, 293-299 (2007)
[24]He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopictype uncertainties, IEEE trans. Automat. control 49, No. 5, 828-832 (2004)
[25]Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations (Applied mathematical sciences), (1993)
[26]Li, X.; De Souza, C. E.: Criteria for robust stability and stabilization of uncertain linear systems with state delay, Automatica 33, 1657-1662 (1997)
[27]Xie, L.: Output feedback H control of systems with parameter uncertainty, Internat. J. Control 63, No. 4, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866