[1] | Abramson, B.: The design of belief network-based systems for price forecasting, Computers and electrical engineering 20, 163-180 (1994) |

[2] | Andrassen, S.; Jensen, F.; Olensen, K.: Medical expert systems based on probabilistic causal networks, International journal of medical computing 28, 1-30 (1991) |

[3] | I.A. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks, in: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, 1989, pp. 247–256 |

[4] | J.R. Castelo, The discrete acyclic digraph Markov model in data mining, Ph.D. Thesis, University of Utrecht, 2002 |

[5] | Chen, C. L.; Talukdar, S.: Causal nets for diagnosis, , 379-386 (1993) |

[6] | J. Cheng, D.A. Bell, W. Liu, An algorithm for Bayesian belief network construction from data, in: Proceedings of the 6th International Workshop on Artificial Intelligence, 1997 |

[7] | Cheng, J.; Greiner, R.; Kelly, J.; Bell, D.; Liu, W.: Learning Bayesian networks from data: an efficient approach based on information theory, Artificial intelligence 137, 43-90 (2000) · Zbl 0995.68114 · doi:10.1016/S0004-3702(02)00191-1 |

[8] | Chickering, D. M.: A transformational characterization of equivalent Bayesian network structures, Uncertainty in artificial intelligence 11, 87-98 (1995) |

[9] | Chickering, D. M.: Learning equivalence classes of Bayesian networks structures, Journal of machine learning research 2, 445-498 (2002) · Zbl 1007.68179 · doi:10.1162/153244302760200696 |

[10] | D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is NP-Hard, Technical Report MSR-TR-94-17, Microsoft Research, 1994 |

[11] | Chickering, D. M.; Meek, C.; Heckerman, D.: Large-sample learning of Bayesian networks is NP-hard, Proceedings of the nineteenth conference on uncertainty in artificial intelligence, 124-133 (2003) |

[12] | Chow, C.; Liu, C.: Approximating discrete probability distributions with dependence trees, IEEE transactions on information theory 14, 462-467 (1968) · Zbl 0165.22305 · doi:10.1109/TIT.1968.1054142 |

[13] | C. Conati, K. VanLehn, Probabilistic plan recognition for cognitive apprenticeship, in: Proceedings of the 18th Annual Conference of the Cognitive Science Society, 1996 |

[14] | Conover, W. J.: Practical nonparametric statistics, (1999) |

[15] | Cooper, G. F.; Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data, Machine learning 9, 309-347 (1992) · Zbl 0766.68109 |

[16] | D. Dash, M.J. Druzdzel, A hybrid anytime algorithm for the construction of causal models from sparse data, in: Proceedings of the Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, 1999, pp. 142–149 |

[17] | J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: Proceedings of the Proceedings of the Twelfth International Conference on Machine Learning, 1995, pp. 194–202 |

[18] | Friedman, N.; Linial, M.; Nachman, I.; Pe’er, D.: Using Bayesian networks to analyze expression data, Journal of computational biology 7, 601-620 (2000) |

[19] | D. Geiger, A. Paz, J. Pearl, Learning causal trees from dependence information, Technical Report R-149, Computer Science Department, University of California, 1990 |

[20] | D. Grossmann, P. Domingos, Learning Bayesian network classifiers by maximizing conditional likelihood, in: Proceedings of the Twenty First International Conference on Machine Learning, Banff, Canada, 2004 |

[21] | Heckerman, D.; Geiger, D.; Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data, Machine learning 20, 197-243 (1995) · Zbl 0831.68096 |

[22] | Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling, Uncertainty in artificial intelligence 2, 149-163 (1988) · Zbl 0649.68095 |

[23] | Herskovits, E.; Cooper, G.: Kutató: an entropy-driven system for construction of probabilistic expert systems from databases, Uncertainty in artificial intelligence 6, 117-125 (1991) |

[24] | Kennett, R.; Korb, K.; Nicholson, A.: Seabreeze prediction using Bayesian networks: A case of study, (2001) |

[25] | Larrañaga, P.; Poza, M. Y.; Y.; Murga, R. H.; Kuijpers, C.: Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters, IEEE transactions on pattern analysis and machine intelligence 18, 912-926 (1996) |

[26] | Lauritzen, S.; Spiegelhalter, D. J.: Local computations with probabilities on graphical structures and their application on expert systems, Journal of the royal statistical society 50, 157-224 (1988) · Zbl 0684.68106 |

[27] | Mangasarian, O. L.; Wolberg, W. H.: Cancer diagnosis via linear programming, SIAM news 23, 1-18 (1990) |

[28] | Mani, S.; Mcdermott, S.; Valtorta, M.: Mentor: A Bayesian model for prediction of mental retardation in newborns, Research in developmental disabilities 18, 303-318 (1997) |

[29] | D. Margaritis, C. Faloutsos, S. Thrun, NetCube: A scalable tool for fast data mining and compression, in: Proceedings of the 27th Conference on Very Large Databases, VLDB, Rome, Italy, 2001 |

[30] | C. Meek, Graphical models: Selecting causal and statistical models, Ph.D. Thesis, Carnegie Mellon University, 1997 |

[31] | A.W. Moore, W.-K. Wong, Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning, in: Proceedings of the Twentieth International Conference in Machine Learning, ICML-2003, Washington, DC, 2003 |

[32] | D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI Repository of machine learning databases, Irvine, CA, Department of Information and Computer Science, University of California, 1998. http://www.ics.uci.edu/ mlearn/MLRepository.html |

[33] | J. Pearl, Bayesian networks, causal inference and knowledge discovery, Technical Report R-281, UCLA Cognitive Systems Laboratory, 2001 |

[34] | Robinson, R. W.: Counting unlabeled acyclic digraphs, Lectures notes in mathematics 622, 28-43 (1997) · Zbl 0376.05031 |

[35] | J. Royalty, R. Holland, J. Goldsmith, A. Dekhtyar, POET: The online preference elicitation tool, Technical Report WS-02-13, AAAI, 2002 |

[36] | Sarkar, S.; Murthy, I.: Constructing efficient belief network structures with expert provided information, IEEE transactions on knowledge and data engineering 89, 134-143 (1996) |

[37] | Sarkar, S.; Sriram, S.: Bayesian models for early warning of bank failures, Management science 47, No. 11, 1457-1475 (2001) · Zbl 1232.91722 · doi:10.1287/mnsc.47.11.1457.10253 |

[38] | Schwartz, S. M.; Baron, J.; Clarke, J. R.: A causal Bayesian model for the diagnosis of appendicitis, Uncertainty in artificial intelligence 2, 423-434 (1988) · Zbl 0709.68553 |

[39] | A.P. Singh, A.W. Moore, Findign optimal Bayesian networks by dynamic programming, CMU-CALD-05-106, Pittsburgh, PA, School of computer science, Carnegie Mellon University, 2005. http://www.autonlab.org/autonweb/14757.html |

[40] | Spangler, W. E.; Mordechai, G. -O.; May, J. H.: Using data mining to profile TV viewers, Communications of the ACM 46, No. 12, 66-72 (2003) |

[41] | J.G. Torres-Toledano, L. Sucar, Bayesian networks for reliability analysis of complex systems, Progress in Artificial Intelligence, IBERAMIA, 1998 |

[42] | Valadares, J.; Ramalho, G.; Ladeira, M.: Modeling complex management games with Bayesian networks: the futsim case of study, (2002) |

[43] | W.-K. Wong, A.W. Moore, G. Cooper, M. Wagner, Bayesian network anomaly pattern detection for disease outbreaks, in: Proceedings of the Twentieth International Conference on Machine Learning, ICML-2003. Washington, DC, 2003 |

[44] | Yigun, G.; Peiris, D.; Crawford, J.; Ncnicol, J.; Marshall, B.; Jefferies, R.: An application of belief networks to future crop production, (1994) |