zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
System reliability forecasting by support vector machines with genetic algorithms. (English) Zbl 1187.90113
Summary: Support vector machines (SVMs) have been used successfully to deal with nonlinear regression and time series problems. However, SVMs have rarely been applied to forecasting reliability. This investigation elucidates the feasibility of SVMs to forecast reliability. In addition, genetic algorithms (GAs) are applied to select the parameters of an SVM model. Numerical examples taken from the previous literature are used to demonstrate the performance of reliability forecasting. The experimental results reveal that the SVM model with genetic algorithms (SVMG) results in better predictions than the other methods. Hence, the proposed model is a proper alternative for forecasting system reliability.
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
90C59Approximation methods and heuristics
68T05Learning and adaptive systems