zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Implicit iterative methods for nonconvex variational Inequalities. (English) Zbl 1187.90297
Summary: We suggest and analyze an implicit iterative method for solving nonconvex variational inequalities using the technique of the projection operator. We also discuss the convergence of the iterative method under suitable weaker conditions. Our method of proof is very simple as compared with other techniques.
MSC:
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
References:
[1]Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C.R. Acad. Sci. Paris 258, 4413–4416 (1964)
[2]Bounkhel, M., Tadji, L., Hamdi, A.: Iterative schemes to solve nonconvex variational problems. J. Inequal. Pure Appl. Math.4, 1–14 (2003)
[3]Clarke, F.H., Ledyaev, Y.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin (1998)
[4]Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)
[5]Noor, M.A.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988) · Zbl 0655.49005 · doi:10.1016/0893-9659(88)90054-7
[6]Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004) · Zbl 1134.49304 · doi:10.1016/S0096-3003(03)00558-7
[7]Noor, M.A.: Iterative schemes for nonconvex variational inequalities. J. Optim. Theory Appl. 121, 385–395 (2004) · Zbl 1062.49009 · doi:10.1023/B:JOTA.0000037410.46182.e2
[8]Noor, M.A.: Projection methods for nonconvex variational inequalities. Optim. Lett. (2009)
[9]Noor, M.A., Noor, K.I., Rassias, T.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993) · Zbl 0788.65074 · doi:10.1016/0377-0427(93)90058-J
[10]Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000) · Zbl 0960.49018 · doi:10.1090/S0002-9947-00-02550-2