zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New algorithm for the numerical solution of the integro-differential equation with an integral boundary condition. (English) Zbl 1187.92094
Summary: In this paper, a sequence of approximate solutions converging uniformly to the exact solution for a class of integro-differential equations with an integral boundary condition arising in chemical engineering, underground water flow and population dynamics and other fields of physics and mathematical chemistry are obtained by using an iterative method. An exact solution is represented in the form of series in the reproducing kernel space. The n-term approximation u n (x) is proved to converge to the exact solution u(x). Moreover, the first derivative of u n (x) is also convergent to the first derivative of u(x).
92E99Applications of mathematics to chemistry
65R99Numerical methods for integral equations and transforms
92F05Applications of mathematics to other natural sciences
[1]Gallardo J.M.: Second order differential operators with integral boundary conditions and generation of semigroups. Rocky Mt. J. Math. 30, 1265–1292 (2000) · Zbl 0984.34014 · doi:10.1216/rmjm/1021477351
[2]Karakostas G.L., Tsamatos P.Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differ. Equ. 30, 1–17 (2002)
[3]Lomtatidze A., Malaguti L.: On a nonlocal boundary-value problems for second order nonlinear singular differential equations. Georgian Math. J. 7, 133–154 (2000)
[4]Bouziani A., Merazga N.: Solution to a semilinear pseudoparabolic problem with integral conditions. Electron. J. Differ. Equ. 115, 1–18 (2006)
[5]Merazga N., Bouziani A.: On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space. Nonlinear Anal. 66, 604–623 (2007) · Zbl 1105.35044 · doi:10.1016/j.na.2005.12.005
[6]Pulkina L.S.: A non-local problem with integral conditions for hyperbolic equations. Electron. J. Differ. Equ. 45, 1–6 (1999)
[7]Jankowski T.: Monotone and numerical-analytic methods for differential equations. Comput. Math. Appl. 45, 1823–1828 (2003) · Zbl 1054.45003 · doi:10.1016/S0898-1221(03)90003-4
[8]Cui M.G., Chen Z.: The exact solution of nonlinear age-structured population model. Nonlinear Anal. Real World Appl. 8, 1096–1112 (2007) · Zbl 1124.35030 · doi:10.1016/j.nonrwa.2006.06.004
[9]Capobianco E.: Kernel methods and flexible inference for complex stochastic dynamics. Physica A: Stat. Mech. Appl. 387, 4077–4098 (2008) · doi:10.1016/j.physa.2008.03.003
[10]Ball J.A., Bolotnikov V., Fang Q.: Schur-class multipliers on the Arveson space: De Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations. J. Math. Anal. Appl. 341, 519–539 (2008) · Zbl 1223.47012 · doi:10.1016/j.jmaa.2007.10.033
[11]Chen Z., Lin Y.Z.: The exact solution of a linear integral equation with weakly singular kernel. J. Math. Anal. Appl. 344, 726–734 (2008) · Zbl 1144.45002 · doi:10.1016/j.jmaa.2008.03.023
[12]G.E. Fasshauer, Meshfree approximation methods with MATLAB. With 1 CD-ROM (Windows, Macintosh and UNIX). (World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, 2007)
[13]Cui M.G., Lin Y.Z.: Nonlinear numercial analysis in the reproducing kernel space. Nova Science Publisher, New York (2008)
[14]Cui M.G., Geng F.Z.: Solving singular two-point boundary value problem in reproducing kernel space. J. Comput. Appl. Math. 205, 6–15 (2007) · Zbl 1149.65057 · doi:10.1016/j.cam.2006.04.037
[15]Yildirim A.: Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Comput. Math. Appl. 56, 3175–3180 (2008) · Zbl 1165.65377 · doi:10.1016/j.camwa.2008.07.020