zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unknown inputs’ adaptive observer for a class of chaotic systems with uncertainties. (English) Zbl 1187.93059
Summary: This paper treats the adaptive synchronization problem of a class of uncertain chaotic systems with uncertainties and unknown inputs in the drive-response framework. A robust adaptive sliding mode observer-based response system is designed to synchronize a given chaotic system without the knowledge of upper bounds of uncertainties and unknown inputs. Further, the unknown inputs can be approximately recovered directly by the concept of equivalent control signal. To highlight our method, we improve the robustness of ciphering in a secure communication system. Computer simulation is also given for the purpose of illustration and verification.
93C40Adaptive control systems
93D20Asymptotic stability of control systems
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990)
[2]Yu, Y. G.; Zhang, S. C.: The synchronization of linearly bidirectional coupled chaotic systems, Chaos solitons fractals 22, 189-197 (2004) · Zbl 1060.93538 · doi:10.1016/j.chaos.2003.12.088
[3]Chen, H. K.: Global chaos synchronization of new chaotic systems via nonlinear control, Chaos solitons fractals 23, 1245-1251 (2005) · Zbl 1102.37302 · doi:10.1016/j.chaos.2004.06.040
[4]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys. rev. Lett. 76, 1804-1807 (1996)
[5]Rosa, E. R.; Ott, E.; Hess, M. H.: Transition to phase synchronization of chaos, Phys. rev. Lett. 80, 1642-1645 (1998)
[6]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys. rev. Lett. 78, 4193-4196 (1997)
[7]Sivaprakasam, S.; Shahverdiev, E. M.; Spencer, P. S.; Shore, K. A.: Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback, Phys. rev. Lett. 87, 154101-154103 (2001)
[8]Rulkov, N. F.; Sushchik, M. N.; Tsimring, L. S.; Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E 51, 980-994 (1995)
[9]Kocarev, L.; Partlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys. rev. Lett. 76, 1816-1819 (1996)
[10]Gonzaléz-Miranda, J. M.: Generalized synchronization in directionally coupled systems with identical individual dynamics, Phys. rev. E 65, 047202-047204 (2002)
[11]Liu, Z. R.; Chen, G. R.: On area-preserving non-hyperbolic chaotic maps: A case study, Chaos solitons fractals 16, 811-818 (2003) · Zbl 1033.37008 · doi:10.1016/S0960-0779(02)00455-1
[12]Femat, R.; Solís-Perales, G.: On the chaos synchronization phenomena, Phys. lett. A 236, 50-60 (1999) · Zbl 0936.37010 · doi:10.1016/S0375-9601(99)00667-2
[13]Pikovsky, A.; Rosenblum, M.; Kurths, J.: Synchronization: A universal concept in nonlinear sciences, (2001)
[14]Femat, R.; Solís-Perales, G.: Synhronization of chaotic system with different order, Phys. rev. E 65, No. 1–7, 036226 (2001)
[15]Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communications, Phys. lett. A 326, 102-113 (2004) · Zbl 1161.94389 · doi:10.1016/j.physleta.2004.04.004
[16]Femat, R.; Alvarez-Ramirez, J.; Fernandez-Anaya, G.: Adaptive synchronization of high-order chaotic systems: A feedback with low-order parametrization, Physica D 139, 231-246 (2000) · Zbl 0954.34037 · doi:10.1016/S0167-2789(99)00226-2
[17]Bragard, J.; Boccaletti, S.; Arecchi, T. T.: Control and synchronization of space extended dynamical systems, Int. J. Bifur. chaos 11, 1149-1158 (2001)
[18]Feki, M.: An adaptive chaos synchronization scheme applied to secure communication, Chaos solitons fractals 18, 141-148 (2003) · Zbl 1048.93508 · doi:10.1016/S0960-0779(02)00585-4
[19]S., S. Bowong; Kakmeni, F. M. Moukam: Synchronization of uncertain chaotic systems via backstepping approach, Chaos solitons fractals 21, 999-1011 (2004) · Zbl 1045.37011 · doi:10.1016/j.chaos.2003.12.084
[20]Yang, T.; Shao, H. H.: Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design, Phys. rev. E 65, 046210-046215 (2002)
[21]Azena, H.; Yaz, E. E.: Sliding-mode adaptive observer approach to chaotic synchronization, J. dyn. Syst. meas. Control-trans. ASME 122, 758-765 (2000)
[22]Bowong, S.; Kakmeni, F. M. Moukam; Tchawoua, C.: Controlled synchronization of chaotic systems with uncertainties via a sliding mode control design, Phys. rev. E 70 (2004)
[23]Yang, T.; Chua, L. O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE trans. Circuits syst. I fund. Theor. appl. 44, 976-988 (1997)
[24]Chen, S.; Yang, Q.; Wang, C.: Impulsive control and synchronization of unified chaotic system, Chaos solitons fractals 20, 751-758 (2004) · Zbl 1050.93051 · doi:10.1016/j.chaos.2003.08.008
[25]Grassi, G.; Mascolo, S.: Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks, Int. J. Bifur. chaos 9, 705-711 (1999) · Zbl 0980.37032 · doi:10.1142/S0218127499000493
[26]Fang, J. Q.; Hong, Y.; Chen, G.: Switching manifold approach to chaos synchronization, Phys. rev. E 59, R2523-R2536 (1999)
[27]Nijmeijer, H.; Mareels, I. M. Y.: An observer looks at synchronization, IEEE trans. Circuits syst. I 44, 882-889 (1997)
[28]Morgül, O.; Solak, E.: Observer based synchronization of chaotic systems, Phys. rev. E 54, 4803-4811 (1996)
[29]Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans. Circuits syst. I 44, 1011-1013 (1997)
[30]Feki, M.: Observer-based exact synchronization of ideal and mismatched chaotic systems, Phys. lett. A 309, 53-60 (2003) · Zbl 1010.37016 · doi:10.1016/S0375-9601(03)00171-3
[31]Bowong, S.; Kakmeni, F. M. Moukam; Koina, R.: A new synchronization principle for a class of Lur’e systems with applications in secure communications, Int. J. Bifur. chaos 14, 2477-2491 (2004) · Zbl 1061.93051 · doi:10.1142/S0218127404010758
[32]Bocaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C.: The synchronization of chaotic systems, Phys. rep. 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[33]Femat, R.; Jauregui-Ortiz, R.; Solis-Perales, G.: A chaos-based communication scheme via robust asymptotic feedback, IEEE trans. Circuits syst. I 48, 1161-1169 (2001)
[34]Bai, E. -W.; Lonngren, K. E.; Uçar, A.: Secure communication via multiple parameter modulation in a delayed chaotic system, Chaos solitons fractals 23, 1071-1076 (2005) · Zbl 1068.94500 · doi:10.1016/j.chaos.2004.06.072
[35]Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with application to communication, Phys. rev. Lett. 71, 65-68 (1993)
[36]Hasler, M.: Engineering chaos for secure communication systems, Philos. trans. R. soc. Lond. A 353, No. 1701, 115-126 (1995)
[37]Popov, V. M.: Hyperstability of control system, (1973)
[38]Zhong, G. Q.: Implementation of Chua’s circuit with a cubic nonlinearity, Int. J. Bifur. chaos 41, 934-941 (1994)
[39]Lazzouni, S. A.; Bowong, S.; Kakmeni, F. M. Moukam; Cherki, B.; Ghouali, N.: Chaos control using small-amplitude damping signals of the extended Duffing equation, Commun. nonlinear sci. Numer. simul. 12, 804-813 (2007) · Zbl 1120.93325 · doi:10.1016/j.cnsns.2005.08.004
[40]Marino, R.; Tomei, P.: Nonlinear control design-geometric, adaptive and robust, (1995) · Zbl 0833.93003
[41]Tan, C. P.; Edwards, C.: Sliding mode observers for detection and reconstruction of sensor faults, Automatica 38, 1815-1821 (2002) · Zbl 1011.93505 · doi:10.1016/S0005-1098(02)00098-5
[42]Edwards, C.; Spurgeon, S. K.; Patton, R. J.: Sliding mode observers for fault detection and isolation, Automatica 36, 541-548 (2000) · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[43]Khalil, H. K.: A nonlinear control systems, (1995)
[44]Liao, T. L.; Huang, N. S.: An observer-based approach for chaotic synchronization with applications to secure communication, IEEE trans. Circuits syst. I 46, 1144-1150 (1999) · Zbl 0963.94003 · doi:10.1109/81.788817
[45]Boutayeb, M.; Dourouach, M.; Rafaralahy, H.: Generalized state-space observers for chaotic synchronization and secure communication, IEEE trans. Circuits syst. I 49, 345-349 (2002)