zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Maximum entropy principle and power-law tailed distributions. (English) Zbl 1188.82034
Summary: In ordinary statistical mechanics the Boltzmann-Shannon entropy is related to the Maxwell-Bolzmann distribution p i by means of a twofold link. The first link is differential and is offered by the Jaynes Maximum Entropy Principle. Indeed, the Maxwell-Boltzmann distribution is obtained by maximizing the Boltzmann-Shannon entropy under proper constraints. The second link is algebraic and imposes that both the entropy and the distribution must be expressed in terms of the same function in direct and inverse form. Indeed, the Maxwell-Boltzmann distribution p i is expressed in terms of the exponential function, while the Boltzmann-Shannon entropy is defined as the mean value of -ln(p i ). In generalized statistical mechanics the second link is customarily relaxed. Of course, the generalized exponential function defining the probability distribution function after inversion, produces a generalized logarithm Λ(p i ). But, in general, the mean value of -Λ(p i ) is not the entropy of the system. Here we reconsider the question first posed in [Phys. Rev. E 66, 056125 (2002) and 72, 036108 (2005)], if and how is it possible to select generalized statistical theories in which the above mentioned twofold link between entropy and the distribution function continues to hold, such as in the case of ordinary statistical mechanics. Within this scenario, apart from the standard logarithmic-exponential functions that define ordinary statistical mechanics, there emerge other new couples of direct-inverse functions, i.e. generalized logarithms Λ(x) and generalized exponentials Λ -1 (x), defining coherent and self-consistent generalized statistical theories. Interestingly, all these theories preserve the main features of ordinary statistical mechanics, and predict distribution functions presenting power-law tails. Furthermore, the obtained generalized entropies are both thermodynamically and Lesche stable.

82C03Foundations of time-dependent statistical mechanics
[1]A.M. Mathai, A Handbook of generalized Special Functions for Statistical and Physical Sciences (Clarendon, Oxford 1993)
[2]A. Hasegawa, A.M. Kunioki, M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985)
[3]V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)
[4]P.L. Biermann, G. Sigl, Lectures Notes in Physics 576 (Spring-Verlag, Berlin, 2001)
[5]G. Wilk, Z. Wlodarczyk, Phys. Rev. D 50, 2318 (1994)
[6]D.B. Walton, J. Rafelski, Phys. Rev. Lett. 84, 31 (2000)
[7]A. Ott, J.P. Bouchaud, D. Langevin, W. Urbach, Phys. Rev. Lett. 65, 2201 (1990)
[8]J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)
[9]M.F. Shlesinger, G.M. Zaslavsky, J. Klafter, Nature 363, 31 (1993)
[10]T.H. Solomon, E.R. Weeks, H.L. Swinney, Phys. Rev. Lett. 71, 3975 (1993)
[11]R.A. Antonia, N. Phan-Thien, B.R. Satyoparakash, Phys. Fluids 24, 554 (1981)
[12]B.M. Boghosian, Phys. Rev. E 53, 4754 (1996)
[13]K. Kasahara, Earthquake Mechanics (Cambridge University Press, Cambridge, 1981)
[14]M. Ausloos, K. Ivanova, Phys. Rev. E 63, 047201 (2001)
[15]E.T. Lu, R.J. Hamilton, Astrophysical Journal 380, 89 (1991)
[16]K.J. Niklas, Amer. J. Botany 81, 134 (1994)
[17]J.C. Nacher, T. Ochiai Phys. Lett. A 372, 6202 (2008)
[18]V. Plerou, P. Gopikrishnan, L.A. Nunes Amaral, Xavier Gabaix, H.E. Stanley, Phys. Rev. E 62, R3023 (2000)
[19]X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003)
[20]V. Pareto, Cours d’Économie Politique (Droz, Geneva 1896)
[21]A. Blank, S. Solomon, Physica A 287, 279 (2000)
[22]S. Miyazima, Y. Lee, T. Nagamine, H. Miyajima, Physica A 278, 282 (2000)
[23]H. Ebel, L.-I. Mielsch, S. Bornholdt, Phys. Rev. E 66, 035103 (2002)
[24]S. Wichmann, D. Stauer, F.W.S. Lima et al., Transact. of the Phil. Society 105, 126 (2007)
[25]K. Kosmidis, A. Kalampokis, P. Argyrakis, Physica A 366, 495 (2006)
[26]Y.M. Choi, H.J. Kim, Physica A 382, 665 (2007)
[27]D.C. Roberts, D. L. Turcotte, Fractals 6, 351 (1998)
[28]A. Clauset, M. Young, K.S. Gleditsch, J. of Conflict Resolution 51, 58 (2007)
[29]S. Redner, Eur. Phys. J. B 4, 131 (1998)
[30]B. Tadic, S. Thurner, G.J. Rodger, Phys. Rev. E 69, 036102 (2004)
[31]M.E.J. Newman, Contemporary Physics 46, 323 (2005)
[32]D. Sornette, Phys. Rev. E 57, 4811 (1998)
[33]M.L. Goldstein, S.A. Morris, G.G. Yen, Eur. Phys. J. B 41, 255 (2004)
[34]G. Kaniadakis, G. Lapenta, Phys. Rev. E 62, 3246 (2000)
[35]G. Kaniadakis, M. Lissia, A.M. Scarfone, Physica A 340, 41 (2004)
[36]G. Kaniadakis, M. Lissia, A.M. Scarfone, Phys. Rev. E 71, 046128 (2005)
[37]S. Abe, J. Phys. A: Math. Gen. 36, 8733 (2003)
[38]T.D. Frank, Phys. Lett. A E 299, 153 (2002)
[39]I. Csiszar, Ann. Prob. 3, 146 (1975)
[40]S. Abe, Phys. Rev. E 66, 046134 (2002)
[41]B. Lesche, J. Stat. Phys. 27, 419 (1982)
[42]E.T. Jaynes, Phys. Rev. 106, 620 (1957); E.T. Jaynes, Phys. Rev. 108, 171 (1957)
[43]T.S. Biro, G. Kaniadakis, Eur. Phys. J. B 50, 3 (2006)
[44]G. Kaniadakis, P. Quarati, Physica A 192, 677 (1993)
[45]G. Kaniadakis, P. Quarati, Physica A 237, 229 (1997)
[46]G. Kaniadakis, A. Lavagno, P. Quarati, Nucl. Phys. B 466, 527 (1996)
[47]G. Kaniadakis, A. Lavagno, P. Quarati, Phys. Lett. A 227, 227 (1997)
[48]V. Schwammle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 58, 159 (2007)
[49]P.-H. Chavanis, Physica A 332, 89 (2004)
[50]T.D. Frank, Phys. Lett. A E 305, 150 (2002)
[51]G. Kaniadakis, Physica A 296, 405 (2001)
[52]G. Kaniadakis, Phys. Lett. A 288, 283 (2001)
[53]G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)
[54]G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)
[55]R. Silva, Eur. Phys. J. B 54, 499 (2006)
[56]R. Silva, Phys. Lett. A 352 17 (2006)
[57]T. Wada, Phisica A 340, 126 (2004)
[58]T. Wada, Continuum Mechanics and Thermodynamics 16, 263 (2004)
[59]G. Kaniadakis, A.M. Scarfone, Physica A 340, 102 (2004)
[60]S. Abe, G. Kaniadakis, A.M. Scarfone, J. Phys. A: Math. Gen. 37, 10513 (2004)
[61]J. Naudts, Physica A 316, 323 (2002)
[62]J. Naudts, Rev. Math. Phys. 16, 809 (2004)
[63]A.M. Scarfone, T. Wada, Progress Theor. Phys. Suppl. 162, 45 (2006)
[64]T. Yamano, Phys. Lett. A 308, 364 (2003)
[65]G. Pistone, Eur. Phys. J. B 69 (2009), DOI: 10.1140/epjb/e2009-00154-y
[66]Guo Lina, Du Jiulin, Liu Zhipeng, Phys. Lett. A 367, 431 (2007)
[67]Guo Lina, Du Jiulin, Phys. Lett. A 362, 368 (2007)
[68]G. Lapenta, S. Markidis, A. Marocchino, G. Kaniadakis, The Astrophysical Journal 666, 949 (2007)
[69]G. Lapenta, S. Markidis, G. Kaniadakis, J. Stat. Mech., P02024 (2009)
[70]A. Rossani, A.M. Scarfone, J. Phys. A 37, 4955 (2004)
[71]J.M. Silva, R. Silva, J.A.S. Lima, Phys. Lett. A 372, 5754 (2008)
[72]J.C. Carvalho, R. Silva, J.D. do Nascimento Jr., J.R. De Medeiros, EPL 84, 59001 (2008)
[73]J.C. Carvalho, J.D. do Nascimento Jr., R. Silva, J.R. De Medeiros, Astrophys. J. Lett. 696, L48 (2009)
[74]A.M. Teweldeberhan, H.G. Miller, R. Tegen, Int. J. Mod. Phys. E 12, 669 (2003)
[75]F.I.M. Pereira, R. Silva, J.S. Alcaniz, Non-Gaussian statistics and the relativistic nuclear equation of state, e-print arXiv:0902.2383
[76]T. Wada, A.M. Scarfone, Eur. Phys. J. B 69 (2009), DOI: 10.1140/epjb/e2009-00159-6
[77]M. Coraddu, M. Lissia, R. Tonelli, Physica A 365, 252 (2006)
[78]R. Tonelli, G Mezzorani, F. Meloni, M. Lissia, M. Coraddu, Prog. Theor. Phys. 115, 23 (2006)
[79]A. Celikoglu A, U. Tirnakli, Physica A 372, 238 (2006)
[80]A.I. Olemskoi, V.O. Kharchenko, V.N. Borisyuk, Physica A 387, 1895 (2008)
[81]A.Y. Abul-Magd, Phys. Lett. A 361, 450 (2007)
[82]A.Y. Abul-Magd, Eur. Phys. J. B 69 (2009), DOI: 10.1140/epjb/e2009-00153-0
[83]T. Wada, H. Suyari, Phys. Lett. A 348, 89 (2006)
[84]F. Topsoe, Physica A 340, 11 (2004)
[85]T. Wada, H. Suyari, Phys. Lett. A 368, 199 (2007)
[86]F. Clementi, M. Gallegati, G. Kaniadakis, Eur. Phys. J. B 57, 187 (2007)
[87]F. Clementi, T. Di Matteo, M. Gallegati, G. Kaniadakis, Physica A 387, 3201 (2008)
[88]F. Clementi, M. Gallegati, G. Kaniadakis, J. Stat. Mech., P02037 (2009)
[89]D. Rajaonarison, D. Bolduc, and H. Jayet, Econ. Lett. 86, 13 (2005)
[90]D. Rajaonarison, Econ. Lett. 100, 396 (2008)
[91]L. Euler, Acta Academiae Scientiarum Petropolitanae (1779–1783), pp. 29–51, Sankt Peterburg; Leonardi Euleri Opera Omnia, Series Prima Opera Mathematica (1921), Vol. IV, pp. 350–369
[92]Student (W.S. Gosset), Biometrika 6, 1 (1908)
[93]I.W. Burr, Ann. Math. Stat. 13, 215 (1942)
[94]J. Harvda, F. Charvat, Kybernetica 3, 30 (1967)
[95]C. Tsallis, J. Stat. Phys. 52, 479 (1988)
[96]C. Tsallis, Quimica Nova 17, 468 (1994)
[97]S. Abe, Phys. Lett. A 224, 326 (1997)
[98]D.P. Mittal, Metrika, 22, 35 (1975)
[99]B.D. Sharma, I.J. Taneja, Metrika 22, 205 (1975)
[100]E.P. Borges, I. Roditi, Phys. Lett. A 246, 399 (1998)