zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A dodecalogue of basic didactics from applications of abstract differential geometry to quantum gravity. (English) Zbl 1188.83076
Summary: We summarize the twelve most important in our view novel concepts that have arisen, based on results that have been obtained, from various applications of Abstract Differential Geometry (ADG) to Quantum Gravity (QG). The present document may be used as a concise, yet informal, discursive and peripatetic conceptual guide-cum-terminological glossary to the voluminous technical research literature on the subject. In a bonus section at the end, we dwell on the significance of introducing new conceptual terminology in future QG research by means of ‘poetic language’.
MSC:
83D05Relativistic gravitational theories other than Einstein’s
83C45Quantization of the gravitational field
References:
[1]Auyang, S.Y.: How is Quantum Field Theory Possible? Oxford University Press, New York (1995)
[2]Clark, P.: Philosophy of Science Today. Clarendon, Oxford (2003)
[3]Dirac, P.A.M.: Quantized singularities in the electromagnetic field. Proc. Roy. Soc. London A 133, 60 (1931) · Zbl 0002.30502 · doi:10.1098/rspa.1931.0130
[4]Einstein, A.: The Meaning of Relativity, 5th edn. Princeton University Press, Princeton (1956)
[5]Einstein, A.: Math. Intell. 12(2), 31 (1990)
[6]Faddeev, L.D.: Modern mathematical physics: what it should be. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, Imperial College Press, London (2000)
[7]Feynman, R.P.: The Character of Physical Law. Penguin Books, London (1992)
[8]Feynman, R.P.: Feynman lectures on gravitation. In: Morinigo, F.B., Wagner, W.G., Hatfield, B. (eds.) Notes, Penguin Books, London (1999)
[9]Finkelstein, D.R.: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg. Springer, Berlin (1996)
[10]Isham, C.J.: Canonical groups and the quantization of geometry and topology, In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, Birkhäuser, Basel (1991)
[11]Kandinsky, W.: Watercolors, Drawings, Writings (Cassour, J., added author). Primo Tempo (1961)
[12]Kazantzakis, N.: Salvatores Dei: Spiritual Exercises. Simon & Schuster, New York (1960), translated by Kimon Friar, a Touchstone Book
[13]Leibniz, G.W.: Discourse on Metaphysics and the Monadology. Great Books in Philosophy Series. Prometheus Books, Amherst (1992), translated by Montgomery, G.R.
[14]Mallios, A.: Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, vols. 1–2. Kluwer Academic, Dordrecht (1998). There is also a Russian translation of this 2-volume book by MIR Publishers, Moscow (vol. 1, 2000 and vol. 2, 2001)
[15]Mallios, A.: On an axiomatic treatment of differential geometry via vector sheaves. Appl. Math. Jpn. (Int. Plaza) 48, 93 (1998) (invited paper)
[16]Mallios, A.: On an axiomatic approach to geometric prequantization: a classification scheme à la Kostant–Souriau–Kirillov. J. Math. Sci. (N.Y.) 95, 2648 (1999) (invited paper) · Zbl 0939.53043 · doi:10.1007/BF02169285
[17]Mallios, A.: Abstract differential geometry, general relativity and singularities. In: Abe, J.M., Tanaka, S. (eds.) Unsolved Problems in Mathematics for the 21st Century: A Tribute to Kiyoshi Iséki’s 80th Birthday, p. 77. IOS, Amsterdam (2001) (invited paper)
[18]Mallios, A.: Modern Differential Geometry in Gauge Theories, vol. I: Maxwell Fields. Birkhäuser, Boston (2005)
[19]Mallios, A.: Modern Differential Geometry in Gauge Theories, vol. II: Yang–Mills Fields. Birkhäuser, Boston (2006)
[20]Mallios, A.: K-theory of topological algebras and second quantization. Acta Universitatis Ouluensis–Scientiae Rerum Naturalium, A 408, 145 (2004), math-ph/0207035
[21]Mallios, A.: Abstract differential geometry, singularities and physical applications. In: Strantzalos, P., Fragoulopoulou, M. (eds.) Topological Algebras with Applications to Differential Geometry and Mathematical Physics. Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios, 16–18 September 1999. University of Athens Publications, Athens (2002)
[22]Mallios, A.: Quantum gravity and ”singularities”. Note Math. 25, 57 (2006) (invited paper), physics/0405111
[23]Mallios, A.: Geometry and physics today. In: Raptis, I. (ed.) Special Proceedings issue for Glafka–2004: Iconoclastic Approaches to Quantum Gravity, Int. J. Theor. Phys. (2006) (invited paper), gr-qc/0506088
[24]Mallios, A.: Remarks on ”singularities”. gr-qc/0202028 (2002)
[25]Mallios, A., Raptis, I.: Finitary spacetime sheaves of quantum causal sets: curving quantum causality. Int. J. Theor. Phys. 40, 1885 (2001), gr-qc/0102097 · Zbl 0987.83003 · doi:10.1023/A:1011985002847
[26]Mallios, A., Raptis, I.: Finitary Čech–de Rham cohomology. Int. J. Theor. Phys. 41, 1857 (2002), gr-qc/0110033 · Zbl 1015.83013 · doi:10.1023/A:1021000806312
[27]Mallios, A., Raptis, I.: Finitary, causal and quantal vacuum Einstein gravity. Int. J. Theor. Phys. 42, 1479 (2003), gr-qc/0209048 · Zbl 1033.83018 · doi:10.1023/A:1025732112916
[28]Mallios, A., Raptis, I.: 𝒞 -smooth singularities exposed: chimeras of the differential spacetime manifold. Research monograph (2005, in preparation), gr-qc/0411121
[29]Mallios, A., Rosinger, E.E.: Abstract differential geometry, differential algebras of generalized functions and de Rham cohomology. Acta Appl. Math. 55, 231 (1999) · Zbl 0929.18005 · doi:10.1023/A:1006106718337
[30]Mallios, A., Rosinger, E.E.: Space-time foam dense singularities and de Rham cohomology. Acta Appl. Math. 67, 59 (2001) · Zbl 1005.46020 · doi:10.1023/A:1010663502915
[31]Mallios, A., Rosinger, E.E.: Dense singularities and de Rham cohomology. In: Strantzalos, P., Fragoulopoulou, M. (eds.) Topological Algebras with Applications to Differential Geometry and Mathematical Physics, Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios, 16–18 September1999. Department of Mathematics, University of Athens Publications, Athens (2002)
[32]Manin, Y.I.: Mathematics and Physics. Birkhäuser, Boston (1980)
[33]Midgley, M.: Science as Salvation: A Modern Myth and its Meaning. Routledge, London (2004)
[34]Nehamas, A.: Nietzsche: Life as Literature. Harvard University Press, Harvard (1985)
[35]Plotnitsky, A.: Complementarity: anti-epistemology after Bohr and Derrida. Duke University Press, Dusham (1994)
[36]Raptis, I.: Algebraic quantization of causal sets. Int. J. Theor. Phys. 39, 1233 (2000), gr-qc/9906103 · Zbl 1090.81505 · doi:10.1023/A:1003682602487
[37]Raptis, I.: Finitary spacetime sheaves. Int. J. Theor. Phys. 39, 1703 (2000), gr-qc/0102108 · Zbl 0966.83006 · doi:10.1023/A:1003600931892
[38]Raptis, I.: Finitary-algebraic ’resolution’ of the inner Schwarzschild singularity. Int. J. Theor. Phys. 45, 85 (2006), gr-qc/0408045
[39]Raptis, I.: Finitary topos for locally finite, causal and quantal vacuum Einstein gravity. Int. J. Theor. Phys. (2007, to appear), gr-qc/0507100
[40]Raptis, I.: Categorical quantum gravity. Int. J. Theor. Phys. 45, 1383 (2006), gr-qc/0509089 · Zbl 1153.83301 · doi:10.1007/s10773-006-9129-9
[41]Raptis, I.: ’Third’ quantization of vacuum Einstein gravity and free yang–mills theories. Int. J. Theor. Phys. (2007, to appear), gr-qc/0606021
[42]Raptis, I., Zapatrin, R.R.: Quantization of discretized spacetimes and the correspondence principle. Int. J. Theor. Phys. 39, 1 (2000), gr-qc/9904079 · Zbl 0974.83014 · doi:10.1023/A:1003694830614
[43]Raptis, I., Zapatrin, R.R.: Algebraic description of spacetime foam. Class. Quantum Gravity 20, 4187 (2001), gr-qc/0102048 · Zbl 0987.83043 · doi:10.1088/0264-9381/18/20/303
[44]Schopenhauer, A.: Essays and Aphorisms. Penguin, London (1970)
[45]Sklar, L.: In: Sklar, L. (ed.) The Philosophy of Science: A Collection of Essays, vols. 1–5. Garland, New York (2000)
[46]Stachel, J.J.: The other Einstein: Einstein contra field theory. In: Beller, M., Cohen, R.S., Renn, J. (eds.) Einstein in Context, Cambridge University Press, Cambridge (1993)
[47]Stevens, W.: Adagia (included in Opus Posthumous). Vintage Books, New York (1990)
[48]’t Hooft, G.: Obstacles on the way towards the quantization of space, time and matter, ITP-University of Utrecht, pre-print SPIN-2000/20 (2001)
[49]Tolstoy, I.: The Knowledge and the Power: Reflections on the History of Science. Canongate, Edinburgh (1990)
[50]Wheatley, M.J., Kellner-Rogers, M.: A Simpler Way, 1st edn. Berrett–Koehler, San Francisco (1996)