zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Incorporating one-way substitution policy into the newsboy problem with imprecise customer demand. (English) Zbl 1188.90008
Summary: This paper presents an approach for solving an inventory model for single-period products with maximizing its expected profit in a fuzzy environment, in which the retailer has the opportunity for substitution. Though various structures of substitution arise in real life, in this study, we consider the fuzzy model for two-item with one-way substitution policy. This one-way substitutability is reasonable when the products can be stored according to certain attribute levels such as quality, brand or package size. Again, to describe uncertainty usually probability density functions are being used. However, there are many situations in real world that utilize knowledge-based information to describe the uncertainty. The objective of this study is to provide an analysis of single-period inventory model in a fuzzy environment that enables us to compute the expected resultant profit under substitution. An efficient numerical search procedure is provided to identify the optimal order quantities, in which the utilization of imprecise demand and the use of one-way substitution policy increase the average expected profit. The benefit of product substitution is illustrated through numerical example.
90B05Inventory, storage, reservoirs