zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability and observability for impulsive systems in complex fields. (English) Zbl 1188.93019
Summary: Since the classical example of complex system is the quantum system which is one of the foci of ongoing research, in this paper, the issue of controllability and observability for a class of time-varying impulsive systems defined in complex fields, to be brief, complex time-varying impulsive systems, is addressed. Several sufficient and necessary conditions for state controllability and observability of such systems are established. Meanwhile, corresponding criteria for complex linear time-invariant impulsive systems are also obtained.
MSC:
93B05Controllability
93C05Linear control systems
81Q93Quantum control
References:
[1]Lin, H.; Antsaklis, P. J.: Switching stabilizability for continuous-time uncertain switched linear systems, IEEE trans. Automat. control 52, No. 4, 633-646 (2007)
[2]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[3]Zhang, Y.; Sun, J. T.: Stability of impulsive functional differential equations, Nonlinear anal. TMA 68, No. 12, 3665-3678 (2008) · Zbl 1152.34053 · doi:10.1016/j.na.2007.04.009
[4]Medina, E. A.; Lawrence, D. A.: Reachability and observability of linear impulsive systems, Automatica 44, 1304-1309 (2008)
[5]Xie, G. M.; Wang, L.: Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE trans. Automat. control 49, No. 6, 960-966 (2004)
[6]Guan, Z. H.; Qian, T. H.; Yu, X. H.: Controllability and observability of linear time-varying impulsive systems, IEEE trans. Circuits syst.-I 49, No. 8, 1198-1208 (2002)
[7]Zhao, S. W.; Sun, J. T.: Controllability and observability for a class of time-varying impulsive systems, Nonlinear anal. RWA 10, No. 3, 1370-1380 (2008) · Zbl 1159.93315 · doi:10.1016/j.nonrwa.2008.01.012
[8]Abada, N.; Benchohra, M.; Hammouche, H.: Existence and controllability results for impulsive partial functional differential inclusions, Nonlinear anal. 69, 2892-2909 (2008) · Zbl 1160.34068 · doi:10.1016/j.na.2007.08.060
[9]Sivasundaram, S.; Uvahb, J.: Controllability of impulsive hybrid integro-differential systems, Nonlinear anal. Hybrid syst. 2, No. 4, 1003-1009 (2008) · Zbl 1163.93011 · doi:10.1016/j.nahs.2008.04.003
[10]Liu, B.: Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear anal. 60, 1533-1552 (2005) · Zbl 1079.93008 · doi:10.1016/j.na.2004.11.022
[11]Wonham, W. M.: Linear multivariable control: A geometric approach, (1979)
[12]Xie, G. M.; Wang, L.: Controllability and observability of a class of linear impulsive systems, J. math. Anal. appl. 304, 336-355 (2005) · Zbl 1108.93022 · doi:10.1016/j.jmaa.2004.09.028
[13]Ji, Z. J.; Wang, L.; Guo, X. X.: On controllability of switched linear systems, IEEE trans. Automat. control 53, No. 3, 796-801 (2008)
[14]Sussmann, H. J.; Jurdjevic, V.: Controllability of nonlinear systems, J. differential equations 12, No. 1, 95-116 (1972) · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
[15]Wu, R. B.; Tarn, T. J.; Li, C. W.: Smooth controllability of infinite-dimensional quantum-mechanical systems, Phys. rev. A 73, 012719 (2006)
[16]Mirrahimi, M.; Van Handel, R.: Stabilizing feedback controls for quantum systems, SIAM J. Control optim. 46, No. 2, 445-467 (2007) · Zbl 1136.81342 · doi:10.1137/050644793
[17]Nielsen, M. A.; Chuang, I. L.: Quantum computation and quantum information, (2000)
[18]Kuang, S.; Cong, S.: Lyapunov control methods of closed quantum systems, Automatica 44, No. 1, 98-108 (2008) · Zbl 1138.93040 · doi:10.1016/j.automatica.2007.05.013