zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vague soft sets and their properties. (English) Zbl 1189.03063
Summary: Soft set theory, proposed by Molodtsov, has been regarded as an effective mathematical tool to deal with uncertainty. However, it is difficult to be used to represent the vagueness of problem parameters. In this paper, we introduce the notion of vague soft set which is an extension to the soft set. The basic properties of vague soft sets are presented and discussed.

MSC:
03E72Fuzzy set theory
References:
[1]Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2]Pawlak, Z.: Rough sets, International journal of information and computer sciences 11, 341-356 (1982)
[3]Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE transactions on systems, man and cybernetics 23, No. 2, 610-614 (1993)
[4]Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy sets and systems 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[5]Zhou, L.; Wu, W. Z.: On generalized intuitionistic fuzzy rough approximation operators, Information science 178, No. 11, 2448-2465 (2008) · Zbl 1183.68625 · doi:10.1016/j.ins.2008.01.012
[6]Atanassov, K.: Operators over interval valued intuitionistic fuzzy sets, Fuzzy sets and systems 64, 159-174 (1994) · Zbl 0844.04001 · doi:10.1016/0165-0114(94)90331-X
[7]Gorzalzany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[8]Molodtsov, D.: Soft set theory–first results, Computers mathematics with applications 37, No. 4–5, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[9]Molodtsov, D.: The theory of soft sets, (2004)
[10]Maji, P. K.; Bismas, R.; Roy, A. R.: Soft set theory, Computers mathematics with applications 45, 555-562 (2003)
[11]Yan, C. Y.: A note on soft set theory, Computers mathematics with applications 56, No. 7, 1899-1900 (2008)
[12]Ali, A. I.; Feng, F.; Liu, S.; Win, W. K.; Shabir, M.: On some new operations in soft set theory, Computers mathematics with applications 57, No. 9, 1547-1553 (2009)
[13]Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Journal of computational and applied mathematics 203, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[14]Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Computers mathematics with applications 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[15]Kong, Z.; Gao, L.; Wang, L.; Li, S.: The normal parameter of soft sets and its algorithm, Computers mathematics with applications 56, No. 12, 3029-3037 (2008)
[16]Aktas, H.; Cagman, N.: Soft sets and soft groups, Information science 177, No. 13, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[17]Bustince, H.; Burillo, P.: Vague sets are intuitionistic fuzzy sets, Fuzzy sets and systems 79, 403-405 (1996) · Zbl 0871.04006 · doi:10.1016/0165-0114(95)00154-9
[18]Chen, S. M.: Similarity measures between vague sets and between elements, IEEE transactions on systems, man and cybernetics 27, No. 1, 153-158 (1997)
[19]Chen, S. M.: Analyzing fuzzy system reliability using vague set theory, International journal of applied science and engineering 1, No. 1, 82-88 (2003)
[20]Hong, D. H.; Choi, C. H.: Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy sets and systems 114, 103-113 (2000) · Zbl 0963.91031 · doi:10.1016/S0165-0114(98)00271-1
[21]Kumar, A.; Yadav, S. P.; Kumar, S.: Fuzzy reliability of a marine power plant using interval valued vague sets, International journal of applied science and engineering 4, No. 1, 71-88 (2006)
[22]Kumar, A.; Yadav, S. P.; Kumar, S.: Fuzzy system reliability analysis using Tω based arithmetic operations on L–R type interval valued vague sets, International journal of quality reliability management 24, No. 8, 846-860 (2007)
[23]Wang, J.; Liu, S. Y.; Zhang, J.; Wang, S. Y.: On the parameterized Owa operators for fuzzy MCDM based on vague set theory, Fuzzy optimization and decision making 5, 5-20 (2006) · Zbl 1172.90489 · doi:10.1007/s10700-005-4912-2