zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Combination of interval-valued fuzzy set and soft set. (English) Zbl 1189.03064
Summary: The soft set theory, proposed by Molodtsov, can be used as a general mathematical tool for dealing with uncertainty. By combining the interval-valued fuzzy set and soft set models, the purpose of this paper is to introduce the concept of the interval-valued fuzzy soft set. The complement, “AND” and “OR” operations are defined on the interval-valued fuzzy soft sets. The DeMorgan’s, associative and distribution laws of the interval-valued fuzzy soft sets are then proved. Finally, a decision problem is analyzed by the interval-valued fuzzy soft set. Some numerical examples are employed to substantiate the conceptual arguments.

MSC:
03E72Fuzzy set theory
References:
[1]Molodtsov, D.: Soft set theory–first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[2]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[3]Maji, P. K.; Roy, A. R.: An application of soft sets in a decision making problem, Comput. math. Appli. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[4]Pawlak, Z.: Rough sets–theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[5]Chen, D. G.; Tsang, E. C. C.; Yeung, D. S.; Xizhao, W.: The parameterization reduction of soft sets and its applications, Comput. math. Appli. 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[6]Kong, Z.; Gao, L. Q.; Wang, L. F.; Li, S.: The normal parameter reduction of soft sets and its algorithm, Comput. math. Appli. 56, 3029-3037 (2008) · Zbl 1165.90699 · doi:10.1016/j.camwa.2008.07.013
[7]Aktaş, H.; Çağman, N.: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[8]Feng, F.; Jun, Y. B.; Zhao, X. Z.: Soft semirings, Comput. math. Appli. 56, 2621-2628 (2008) · Zbl 1165.16307 · doi:10.1016/j.camwa.2008.05.011
[9]Jun, Y. B.: Soft BCK/BCI-algebras, Comput. math. Appli. 56, 1408-1413 (2008)
[10]Maji, P. K.; Biswas, R.; Roy, A. R.: Fuzzy soft sets, J. fuzzy math. 9, No. 3, 589-602 (2001) · Zbl 0995.03040
[11]Yang, X. B.; Yu, D. J.; Yang, J. Y.; Wu, C.: Generalization of soft set theory: from crisp to fuzzy case, Advance on soft computing 40, 345-354 (2007) · Zbl 1127.03331
[12]Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowl-based syst. 21, 941-945 (2008)
[13]Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning, part 1, Inform. sci. 8, 199-249 (1975) · Zbl 0397.68071
[14]Gorzałczany, M. B.: A method of inference in approximate reasoning based on interval valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[15]Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, J. comput. Appl. math. 203, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[16]Kong, Z.; Gao, L. Q.; Wang, L. F.: Comment on A fuzzy soft set theoretic approach to decision making problems, J. comput. Appl. math. 223, 540-542 (2009) · Zbl 1159.90421 · doi:10.1016/j.cam.2008.01.011