zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalisation of roughness bounds in rough set operations. (English) Zbl 1189.03065
Summary: This paper investigates the general roughness bounds for rough set operations. Compared with set-oriented rough sets, the results prove that the same upper bound of the roughness for the union, difference and complement operation could be determined by the roughness of the two operand sets. However, the lower roughness bounds of set-oriented rough sets operations do not hold for other rough sets. We provide an example to show the derived bounds from the operand’s roughness.
MSC:
03E72Fuzzy set theory
68T37Reasoning under uncertainty
References:
[1]Banerjee, M.; Pal, S. K.: Roughness of a fuzzy set, Information sciences 93, 235-246 (1996) · Zbl 0879.04004 · doi:10.1016/0020-0255(96)00081-3
[2]Bodjanova, S.: Alpha-bounds of fuzzy numbers, Information sciences 152, 237-266 (2003) · Zbl 1040.03520 · doi:10.1016/S0020-0255(03)00054-9
[3]Dubois, D.; Prade, H.: Rough sets and fuzzy rough sets, International journal of general systems 17, 191-209 (1990) · Zbl 0715.04006 · doi:10.1080/03081079008935107
[4]Iwinski, T. B.: Algebraic approach to rough sets, Bulletin of the Polish Academy of sciences mathematics 35, 673-683 (1987) · Zbl 0639.68125
[5]Jensen, R.; Shen, Q.: Fuzzyrough attribute reduction with application to web categorization, Fuzzy sets and systems 141, 469-485 (2004) · Zbl 1069.68609 · doi:10.1016/S0165-0114(03)00021-6
[6]Komorowski, J.; Pawlak, J. Z.; Polkowski, L.; Skowron, A.: Rough sets: a tutorial, Rough fuzzy hybridization: A new trend in decision-making (1999)
[7]Mousavi, A.; Jabedar-Maralani, P.: Double-faced rough sets and rough communication, Information sciences 148, 41-53 (2002) · Zbl 1024.68102 · doi:10.1016/S0020-0255(02)00275-X
[8]Nanda, S.; Majumdar, S.: Fuzzy rough sets, Fuzzy sets and systems 45, 157-160 (1992) · Zbl 0749.04004 · doi:10.1016/0165-0114(92)90114-J
[9]Obtulowicz, A.: Rough sets and heyting algebra valued sets, Bulletin of the Polish Academy of sciences mathematics 35, 667-671 (1987)
[10]Pawlak, Z.: Rough sets, International journal of computer and information sciences 11, No. 5, 341-356 (1982)
[11]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[12]Pawlak, Z.: Rough sets and intelligent data analysis, Information sciences 147, 1-12 (2002) · Zbl 1018.68082 · doi:10.1016/S0020-0255(02)00197-4
[13]Radzikowska, A.; Kerre, E.: A comparative study of fuzzy rough sets, Fuzzy sets and systems 126, 137-155 (2002) · Zbl 1004.03043 · doi:10.1016/S0165-0114(01)00032-X
[14]Salido, J. F.; Murakami, S.: Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations, Fuzzy sets and systems 139, 515-542 (2003) · Zbl 1047.68139 · doi:10.1016/S0165-0114(03)00124-6
[15]Wiweger, A.: On topological rough sets, Bulletin of the Polish Academy of sciences mathematics 37, 89-93 (1989) · Zbl 0755.04010
[16]Wu, W.; Mi, J.; Zhang, W.: Generalized fuzzy rough sets, Fuzzy sets and systems 151, 263-282 (2003) · Zbl 1019.03037 · doi:10.1016/S0020-0255(02)00379-1
[17]Wybraniec-Skardowska, U.: On generalization of approximation space, Bulletin of the Polish Academy of sciences mathematics 37, 51-61 (1989) · Zbl 0755.04011
[18]Yang, Y.; John, R.: Roughness bounds in rough set operations, Information sciences 176, 3256-3267 (2006) · Zbl 1105.03054 · doi:10.1016/j.ins.2006.02.009
[19]Yao, Y. Y.: Two views of the theory of rough sets in finite universe, International journal of approximate reasoning 15, No. 4, 291-317 (1996)
[20]Yao, Y. Y.: Combination of rough and fuzzy sets based on alpha level sets, Rough sets and data mining: analysis for imprecise data, 301-321 (1997) · Zbl 0859.04005
[21]Yao, Y. Y.; Chen, Y. H.: Rough set approximations in formal concept analysis, Transactions on rough sets V, LNCS 4100, 285-305 (2006) · Zbl 1136.68527 · doi:10.1007/11847465_14
[22]Yao, Y. Y.; Li, X.; Lin, T. Y.; Liu, Q.: Representation and classification of rough set models, Soft computing, 44-47 (1995)
[23]Zakowski, W.: Approximations in the space (u,π), Demonstratio Mathematica 16, 761-769 (1983) · Zbl 0553.04002
[24]Zhang, H.; Liang, H.; Liu, D.: Two new operators in rough set theory with applications to fuzzy sets, Information sciences 166, 147-165 (2004) · Zbl 1101.68871 · doi:10.1016/j.ins.2003.11.003