zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
(α,β)-fuzzy ideals of hemirings. (English) Zbl 1189.16041
Summary: We give a characterization of different types of (α,β)-fuzzy ideals of hemirings, where α,β{,q,q,q} and αq. Special attention is paid to (,q)-fuzzy prime and semiprime ideals.

MSC:
16Y99Generalizations of associative rings and algebras
16D252-sided ideals (associative rings and algebras)
08A72Fuzzy algebraic structures
References:
[1]Aho, A. W.; Ullman, J. D.: Languages and computation, (1979)
[2]Glazek, K.: A guide to literature on semirings and their applications in mathematics and information sciences: with complete bibliography, (2002)
[3]Golan, J. S.: Semirings and their applications, (1999)
[4]Hebisch, U.; Weinert, H. J.; Semirings: Algebraic theory and application in the computer science, (1998)
[5]Henriksen, M.: Ideals in semirings with commutative addition, Amer. math. Soc. notices 6, 321 (1958)
[6]Iizuka, K.: On Jacobson radical of a semiring, Tohoku math. J. 11, 409-421 (1959) · Zbl 0122.25504 · doi:10.2748/tmj/1178244538
[7]La Torre, D. R.: On h-ideals and k-ideals in hemirings, Publ. math. Debrecen 12, 219-226 (1965) · Zbl 0168.28302
[8]Zadeh, L. A.; Sets, Fuzzy: Inf. control, Inf. control 8, 339-353 (1965)
[9]Ahsan, J.; Saifullah, K.; Khan, M. F.: Fuzzy semirings, Fuzzy sets and systems 60, 309-320 (1993) · Zbl 0796.16038 · doi:10.1016/0165-0114(93)90441-J
[10]Ahsan, J.: Semirings characterized by their fuzzy ideals, J. fuzzy math. 6, 181-192 (1998) · Zbl 0906.16019
[11]Ghosh, S.: Fuzzy k-ideals of semirings, Fuzzy sets and systems 95, 103-108 (1998) · Zbl 0924.16036 · doi:10.1016/S0165-0114(96)00306-5
[12]Zhan, J.; Tan, Z.: T-fuzzy k-ideals of semirings, Sci. math. Japan 58, 597-601 (2003) · Zbl 1063.16052
[13]Jun, Y. B.; Özürk, M. A.; Song, S. Z.: On fuzzy h-ideals in hemirings, Inform. sci. 162, 211-226 (2004) · Zbl 1064.16051 · doi:10.1016/j.ins.2003.09.007
[14]Ma, X.; Zhan, J.: On fuzzy h-ideals of hemirings, J. syst. Sci. complexity 20, 470-478 (2007)
[15]Zhan, J.; Dudek, W. A.: Fuzzy h-ideals of hemirings, Inform. sci. 177, 876-886 (2007) · Zbl 1118.16031 · doi:10.1016/j.ins.2006.04.005
[16]Akram, M.; Dudek, W. A.: Intuitionistic fuzzy left k-ideals of semirings, Soft comput. 12, 881-890 (2008) · Zbl 1151.16043 · doi:10.1007/s00500-007-0256-x
[17]Dudek, W. A.: Intuitionistic fuzzy h-ideals of hemirings, WSEAS trans. Math. 12, 1315-1321 (2006)
[18]Dudek, W. A.: Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft comput. 12, 359-364 (2008) · Zbl 1137.16041 · doi:10.1007/s00500-007-0169-8
[19]Ming, P. P.; Ming, L. Y.: Fuzzy topology 1: neighbour Hood structure of fuzzy points and Moore–Smith convergency, J. math. Anal. appl. 76, 571-599 (1980) · Zbl 0447.54006 · doi:10.1016/0022-247X(80)90048-7
[20]Bhakat, S. K.; Das, P.: On the definition of a fuzzy subgroup, Fuzzy sets and systems 51, 235-241 (1992) · Zbl 0786.20047 · doi:10.1016/0165-0114(92)90196-B
[21]Bhakat, S. K.: (q)-level subset, Fuzzy sets and systems 103, 529-533 (1999) · Zbl 0931.20057 · doi:10.1016/S0165-0114(97)00158-9
[22]Bhakat, S. K.: (,q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy sets and systems 112, 299-312 (2000) · Zbl 0948.20049 · doi:10.1016/S0165-0114(98)00029-3
[23]Bhakat, S. K.; Das, P.: (,q)-fuzzy subgroups, Fuzzy sets and systems 80, 359-368 (1996) · Zbl 0870.20055 · doi:10.1016/0165-0114(95)00157-3
[24]Bhakat, S. K.; Das, P.: Fuzzy subrings and ideals redefined, Fuzzy sets and systems 81, 383-393 (1996) · Zbl 0878.16025 · doi:10.1016/0165-0114(95)00202-2
[25]Kondo, M.; Dudek, W. A.: On the transfer principle in fuzzy theory, Mathware soft comput. 12, 41-55 (2005) · Zbl 1081.03054